14 resultados para Papid Prototyping
em CentAUR: Central Archive University of Reading - UK
Resumo:
Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics.
Resumo:
The creation of OFDM based Wireless Personal Area Networks (WPANs) has allowed the development of high bit-rate wireless communication devices suitable for streaming High Definition video between consumer products, as demonstrated in Wireless-USB and Wireless-HDMI. However, these devices need high frequency clock rates, particularly for the OFDM, FFT and symbol processing sections resulting in high silicon cost and high electrical power. The high clock rates make hardware prototyping difficult and verification is therefore very important but costly. Acknowledging that electrical power in wireless consumer devices is more critical than the number of implemented logic gates, this paper presents a Double Data Rate (DDR) architecture for implementation inside a OFDM baseband codec in order to reduce the high frequency clock rates by a complete factor of 2. The presented architecture has been implemented and tested for ECMA-368 (Wireless- USB context) resulting in a maximum clock rate of 264MHz instead of the expected 528MHz clock rate existing anywhere on the baseband codec die.
Resumo:
Modern organisms are adapted to a wide variety of habitats and lifestyles. The processes of evolution have led to complex, interdependent, well-designed mechanisms of todays world and this research challenge is to transpose these innovative solutions to resolve problems in the context of architectural design practice, e.g., to relate design by nature with design by human. In a design by human environment, design synthesis can be performed with the use of rapid prototyping techniques that will enable to transform almost instantaneously any 2D design representation into a physical three-dimensional model, through a rapid prototyping printer machine. Rapid prototyping processes add layers of material one on top of another until a complete model is built and an analogy can be established with design by nature where the natural lay down of earth layers shapes the earth surface, a natural process occurring repeatedly over long periods of time. Concurrence in design will particularly benefit from rapid prototyping techniques, as the prime purpose of physical prototyping is to promptly assist iterative design, enabling design participants to work with a three-dimensional hardcopy and use it for the validation of their design-ideas. Concurrent design is a systematic approach aiming to facilitate the simultaneous involvment and commitment of all participants in the building design process, enabling both an effective reduction of time and costs at the design phase and a quality improvement of the design product. This paper presents the results of an exploratory survey investigating both how computer-aided design systems help designers to fully define the shape of their design-ideas and the extent of the application of rapid prototyping technologies coupled with Internet facilities by design practice. The findings suggest that design practitioners recognize that these technologies can greatly enhance concurrence in design, though acknowledging a lack of knowledge in relation to the issue of rapid prototyping.
Resumo:
This research examines dynamics associated with new representational technologies in complex organizations through a study of the use of a Single Model Environment, prototyping and simulation tools in the mega-project to construct Terminal 5 at Heathrow Airport, London. The ambition of the client, BAA. was to change industrial practices reducing project costs and time to delivery through new contractual arrangements and new digitally-enabled collaborative ways of working. The research highlights changes over time and addresses two areas of 'turbulence' in the use of: 1) technologies, where there is a dynamic tension between desires to constantly improve, change and update digital technologies and the need to standardise practices, maintaining and defending the overall integrity of the system; and 2) representations, where dynamics result from the responsibilities and liabilities associated with sharing of digital representations and a lack of trust in the validity of data from other firms. These dynamics are tracked across three stages of this well-managed and innovative project and indicate the generic need to treat digital infrastructure as an ongoing strategic issue.
Resumo:
Performance analysis has been used for many applications including providing feedback to coaches and players, media applications, scoring of sports performance and scientific research into sports performance. The current study has used performance analysis to generate knowledge relating to the demands of netball competition which has been used in the development of a Netball Specific Fitness Test (NSFT). A modified version of the Bloomfield movement classification was used to provide a detailed analysis of player movement during netball competition. This was considered during a needs analysis when proposing the structure of the NSFT. A series of pilot versions were tested during an evolutionary prototyping process that resulted in the final version of the NSFT, which was found to be representative of movement in netball competition and it distinguished between recreational club players and players of university first team level or above. The test is incremental and involves forward, backward and sideways movement, jumping, lunging, turning and choice reaction.
Resumo:
We review the process of electrospinning and how this new technique for generating a rich morphology of nano and micro scale fibres sits alongside established procedures for rapid manufacturing. We introduce the key elements of electrospinning and how these influence the nature and distribution of the fibres produced. We describe the range of polymers available for electrospinning and the limitations to the use of these materials. Using this base we review the potential approaches to using electrospinning as part of a broader rapid manufacturing system and the possible applications for such a hybrid system.
Resumo:
Numerous Building Information Modelling (BIM) tools are well established and potentially beneficial in certain uses. However, issues of adoption and implementation persist, particularly for on-site use of BIM tools in the construction phase. We describe an empirical case-study of the implementation of an innovative ‘Site BIM’ system on a major hospital construction project. The main contractor on the project developed BIM-enabled tools to allow site workers using mobile tablet personal computers to access design information and to capture work quality and progress data on-site. Accounts show that ‘Site BIM’, while judged to be successful and actively supporting users, was delivered through an exploratory and emergent development process of informal prototyping. Technical IT skills were adopted into the construction project through personal relationships and arrangements rather than formal processes. Implementation was driven by construction project employees rather than controlled centrally by the corporate IT function.
Resumo:
This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.
Resumo:
Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed.
Resumo:
TESSA is a toolkit for experimenting with sensory augmentation. It includes hardware and software to facilitate rapid prototyping of interfaces that can enhance one sense using information gathered from another sense. The toolkit contains a range of sensors (e.g. ultrasonics, temperature sensors) and actuators (e.g. tactors or stereo sound), designed modularly so that inputs and outputs can be easily swapped in and out and customized using TESSA’s graphical user interface (GUI), with “real time” feedback. The system runs on a Raspberry Pi with a built-in touchscreen, providing a compact and portable form that is amenable for field trials. At CHI Interactivity, the audience will have the opportunity to experience sensory augmentation effects using this system, and design their own sensory augmentation interfaces.
Resumo:
Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.