14 resultados para Palaeo-climate

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a selection of methodologies for using the palaeo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to attempt to constrain future climate projections using the same models. The constraints arise from measures of skill in hindcasting palaeo-climate changes from the present over three periods: the Last Glacial Maximum (LGM) (21 000 yr before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (850–1850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of palaeo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitation/temperature or sea ice extent to indicate that models that produce the best agreement with palaeo-climate information give demonstrably different future results than the rest of the models. We also explore cases where comparisons are strongly dependent on uncertain forcing time series or show important non-stationarity, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the palaeo-climate simulations to help inform the future projections and urge all the modelling groups to complete this subset of the CMIP5 runs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The North Atlantic Ocean subpolar gyre (NA SPG) is an important region for initialising decadal climate forecasts. Climate model simulations and palaeo climate reconstructions have indicated that this region could also exhibit large, internally generated variability on decadal timescales. Understanding these modes of variability, their consistency across models, and the conditions in which they exist, is clearly important for improving the skill of decadal predictions — particularly when these predictions are made with the same underlying climate models. Here we describe and analyse a mode of internal variability in the NA SPG in a state-of-the-art, high resolution, coupled climate model. This mode has a period of 17 years and explains 15–30% of the annual variance in related ocean indices. It arises due to the advection of heat content anomalies around the NA SPG. Anomalous circulation drives the variability in the southern half of the NA SPG, whilst mean circulation and anomalous temperatures are important in the northern half. A negative feedback between Labrador Sea temperatures/densities and those in the North Atlantic Current is identified, which allows for the phase reversal. The atmosphere is found to act as a positive feedback on to this mode via the North Atlantic Oscillation which itself exhibits a spectral peak at 17 years. Decadal ocean density changes associated with this mode are driven by variations in temperature, rather than salinity — a point which models often disagree on and which we suggest may affect the veracity of the underlying assumptions of anomaly-assimilating decadal prediction methodologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of evolutionary responses to climate change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural differences among models account for much of the uncertainty in projected climate changes, at least until the mid-twenty-first century. Recent observations encompass too limited a range of climate variability to provide a robust test of the ability to simulate climate changes. Past climate changes provide a unique opportunity for out-of-sample evaluation of model performance. Palaeo-evaluation has shown that the large-scale changes seen in twenty-first-century projections, including enhanced land–sea temperature contrast, latitudinal amplification, changes in temperature seasonality and scaling of precipitation with temperature, are likely to be realistic. Although models generally simulate changes in large-scale circulation sufficiently well to shift regional climates in the right direction, they often do not predict the correct magnitude of these changes. Differences in performance are only weakly related to modern-day biases or climate sensitivity, and more sophisticated models are not better at simulating climate changes. Although models correctly capture the broad patterns of climate change, improvements are required to produce reliable regional projections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During deglaciation of the North American Laurentide Ice Sheet large proglacial lakes developed in positions where proglacial drainage was impeded by the ice margin. For some of these lakes, it is known that subsequent drainage had an abrupt and widespread impact on North Atlantic Ocean circulation and climate, but less is known about the impact that the lakes exerted on ice sheet dynamics. This paper reports palaeogeographic reconstructions of the evolution of proglacial lakes during deglaciation across the northwestern Canadian Shield, covering an area in excess of 1,000,000 km(2) as the ice sheet retreated some 600 km. The interactions between proglacial lakes and ice sheet flow are explored, with a particular emphasis on whether the disposition of lakes may have influenced the location of the Dubawnt Lake ice stream. This ice stream falls outside the existing paradigm for ice streams in the Laurentide Ice Sheet because it did not operate over fined-grained till or lie in a topographic trough. Ice margin positions and a digital elevation model are utilised to predict the geometry and depth of proglacial takes impounded at the margin at 30-km increments during deglaciation. Palaeogeographic reconstructions match well with previous independent estimates of lake coverage inferred from field evidence, and results suggest that the development of a deep lake in the Thelon drainage basin may have been influential in initiating the ice stream by inducing calving, drawing down ice and triggering fast ice flow. This is the only location alongside this sector of the ice sheet where large (>3000 km(2)), deep lakes (similar to120 m) are impounded for a significant length of time and exactly matches the location of the ice stream. It is speculated that the commencement of calving at the ice sheet margin may have taken the system beyond a threshold and was sufficient to trigger rapid motion but that once initiated, calving processes and losses were insignificant to the functioning of the ice stream. It is thus concluded that proglacial lakes are likely to have been an important control on ice sheet dynamics during deglaciation of the Laurentide Ice Sheet. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ascertaining the location of palaeo-ice streams is crucial in order to produce accurate reconstructions of palaeo-ice sheets and examine interactions with the ocean-climate system. This paper reports evidence for a major ice stream in Amundsen Gulf, Canadian Arctic Archipelago. Mapping from satellite imagery (Landsat ETM+) and digital elevation models, including bathymetric data, is used to reconstruct flow-patterns on southwestern Victoria Island and the adjacent mainland (Nunavut and Northwest Territories). Several flow-sets indicative of ice streaming are found feeding into the marine trough and cross-cutting relationships between these flow-sets (and utilising previously published radiocarbon dates) reveal several phases of ice stream activity centred in Amundsen Gulf and Dolphin and Union Strait. A large erosional footprint on the continental shelf indicates that the ice stream (ca. 1000 km long and ca. 150 km wide) filled Amundsen Gulf, probably at the Last Glacial Maximum. Subsequent to this, the ice stream reorganised as the margin retreated back along the marine trough, eventually splitting into two separate low-gradient lobes in Prince Albert Sound and Dolphin and Union Strait. The location of this major ice stream holds important implications for ice sheet-ocean interactions and specifically, the development of Arctic Ocean ice shelves and the delivery of icebergs into the western Arctic Ocean during the late Pleistocene. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainties in sea-level projections for the 21st century have focused ice sheet modelling efforts to include the processes that are thought to be contributing to the recently observed rapid changes at ice sheet margins. This effort is still in its infancy, however, leaving us unable to make reliable predictions of ice sheet responses to a warming climate if such glacier accelerations were to increase in size and frequency. The geological record, however, has long identified examples of nonlinear ice sheet response to climate forcing (Shackleton NJ, Opdyke ND. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28–239, late Pliocene to latest Pleistocene. Geological Society of America Memoirs145: 449–464; Fairbanks RG. 1989. A 17,000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature342: 637–642; Bard E, Hamelin B, Arnold M, Montaggioni L, Cabioch G, Faure G, Rougerie F. 1996. Sea level record from Tahiti corals and the timing of deglacial meltwater discharge. Nature382: 241–244), thus suggesting an alternative strategy for constraining the rate and magnitude of sea-level change that we might expect by the end of this century. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-proxy study of a Holocene sediment core (RF 93-30) from the western flank of the central Adriatic, in 77 m of water, reveals a sequence of changes in terrestrial vegetation, terrigenous sediment input and benthic fauna, as well as evidence for variations in sea surface temperature spanning most of the last 7000 yr. The chronology of sedimentation is based on several lines of evidence, including AMS 14C dates of foraminifera extracted from the core, palaeomagnetic secular variation, pollen indicators and dated tephra. The temporal resolution increases towards the surface and, for some of the properties measured, is sub-decadal for the last few centuries. The main changes recorded in vegetation, sedimentation and benthic foraminiferal assemblages appear to be directly related to human activity in the sediment source area, which includes the Po valley and the eastern flanks of the central and northern Appenines. The most striking episodes of deforestation and expanding human impact begin around 3600 BP (Late Bronze Age) and 700 BP (Medieval) and each leads to an acceleration in mass sedimentation and an increase in the proportion of terrigenous material, reflecting the response of surface processes to widespread forest clearance and cultivation. Although human impact appears to be the proximal cause of these changes, climatic effects may also have been important. During these periods, signs of stress are detectable in the benthic foram morphotype assemblages. Between these two periods of increased terrigeneous sedimentation there is smaller peak in sedimentation rate around 2400BP which is not associated with evidence for deforestation, shifts in the balance between terrigenous and authigenic sedimentation, or changes in benthic foraminifera. The mineral magnetic record provides a sensitive indicator of changing sediment sources: during forested periods of reduced terrigenous input it is dominated by authigenic bacterial magnetite, whereas during periods of increased erosion, anti-ferromagetic minerals (haematite and/or goethite) become more important, as well as both paramagnetic minerals and super-paramagnetic magnetite. Analysis of the alkenone, U37k′, record provides an indication of possible changes in sea surface temperature during the period, but it is premature to place too much reliance on these inferred changes until the indirect effects of past changes in the depth of the halocline and in circulation have been more fully evaluated. The combination of methods used and the results obtained illustrate the potential value of such high resolution near-shore marine sedimentary sequences for recording wide-scale human impact, documenting the effects of this on marine sedimentation and fauna and, potentially, disentangling evidence for human activities from that for past changes in climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earth system models are increasing in complexity and incorporating more processes than their predecessors, making them important tools for studying the global carbon cycle. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes, with coupled climate-carbon cycle models that represent land-use change simulating total land carbon stores by 2100 that vary by as much as 600 Pg C given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous model evaluation methodologies. Here we assess the state-of-the-art with respect to evaluation of Earth system models, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeo data and (ii) metrics for evaluation, and discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute towards the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but it is also a challenge, as more knowledge about data uncertainties is required in order to determine robust evaluation methodologies that move the field of ESM evaluation from "beauty contest" toward the development of useful constraints on model behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate–carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation–climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America – 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.