7 resultados para PSD

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle size distribution (psd) is one of the most important features of the soil because it affects many of its other properties, and it determines how soil should be managed. To understand the properties of chalk soil, psd analyses should be based on the original material (including carbonates), and not just the acid-resistant fraction. Laser-based methods rather than traditional sedimentation methods are being used increasingly to determine particle size to reduce the cost of analysis. We give an overview of both approaches and the problems associated with them for analyzing the psd of chalk soil. In particular, we show that it is not appropriate to use the widely adopted 8 pm boundary between the clay and silt size fractions for samples determined by laser to estimate proportions of these size fractions that are equivalent to those based on sedimentation. We present data from field and national-scale surveys of soil derived from chalk in England. Results from both types of survey showed that laser methods tend to over-estimate the clay-size fraction compared to sedimentation for the 8 mu m clay/silt boundary, and we suggest reasons for this. For soil derived from chalk, either the sedimentation methods need to be modified or it would be more appropriate to use a 4 pm threshold as an interim solution for laser methods. Correlations between the proportions of sand- and clay-sized fractions, and other properties such as organic matter and volumetric water content, were the opposite of what one would expect for soil dominated by silicate minerals. For water content, this appeared to be due to the predominance of porous, chalk fragments in the sand-sized fraction rather than quartz grains, and the abundance of fine (<2 mu m) calcite crystals rather than phyllosilicates in the clay-sized fraction. This was confirmed by scanning electron microscope (SEM) analyses. "Of all the rocks with which 1 am acquainted, there is none whose formation seems to tax the ingenuity of theorists so severely, as the chalk, in whatever respect we may think fit to consider it". Thomas Allan, FRS Edinburgh 1823, Transactions of the Royal Society of Edinburgh. (C) 2009 Natural Environment Research Council (NERC) Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As in any technology systems, analysis and design issues are among the fundamental challenges in persuasive technology. Currently, the Persuasive Systems Development (PSD) framework is considered to be the most comprehensive framework for designing and evaluation of persuasive systems. However, the framework is limited in terms of providing detailed information which can lead to selection of appropriate techniques depending on the variable nature of users or use over time. In light of this, we propose a model which is intended for analysing and implementing behavioural change in persuasive technology called the 3D-RAB model. The 3D-RAB model represents the three dimensional relationships between attitude towards behaviour, attitude towards change or maintaining a change, and current behaviour, and distinguishes variable levels in a user’s cognitive state. As such it provides a framework which could be used to select appropriate techniques for persuasive technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As in any technology systems, analysis and design issues are among the fundamental challenges in persuasive technology. Currently, the Persuasive Systems Development (PSD) framework is considered to be the most comprehensive framework for designing and evaluation of persuasive systems. However, the framework is limited in terms of providing detailed information which can lead to selection of appropriate techniques depending on the variable nature of users or use over time. In light of this, we propose a model which is intended for analysing and implementing behavioural change in persuasive technology called the 3D-RAB model. The 3D-RAB model represents the three dimensional relationships between attitude towards behaviour, attitude towards change or maintaining a change, and current behaviour, and distinguishes variable levels in a user’s cognitive state. As such it provides a framework which could be used to select appropriate techniques for persuasive technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The persuasive design of e-commerce websites has been shown to support people with online purchases. Therefore, it is important to understand how persuasive applications are used and assimilated into e-commerce website designs. This paper demonstrates how the PSD model’s persuasive features could be used to build a bridge supporting the extraction and evaluation of persuasive features in such e-commerce websites; thus practically explaining how feature implementation can enhance website persuasiveness. To support a deeper understanding of persuasive e-commerce website design, this research, using the Persuasive Systems Design (PSD) model, identifies the distinct persuasive features currently assimilated in ten successful e-commerce websites. The results revealed extensive use of persuasive features; particularly features related to dialogue support, credibility support, and primary task support; thus highlighting weaknesses in the implementation of social support features. In conclusion we suggest possible ways for enhancing persuasive feature implementation via appropriate contextual examples and explanation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new coupled cloud physics–radiation parameterization of the bulk optical properties of ice clouds is presented. The parameterization is consistent with assumptions in the cloud physics scheme regarding particle size distributions (PSDs) and mass–dimensional relationships. The parameterization is based on a weighted ice crystal habit mixture model, and its bulk optical properties are parameterized as simple functions of wavelength and ice water content (IWC). This approach directly couples IWC to the bulk optical properties, negating the need for diagnosed variables, such as the ice crystal effective dimension. The parameterization is implemented into the Met Office Unified Model Global Atmosphere 5.0 (GA5) configuration. The GA5 configuration is used to simulate the annual 20-yr shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA), as well as the temperature structure of the atmosphere, under various microphysical assumptions. The coupled parameterization is directly compared against the current operational radiation parameterization, while maintaining the same cloud physics assumptions. In this experiment, the impacts of the two parameterizations on the SW and LW radiative effects at TOA are also investigated and compared against observations. The 20-yr simulations are compared against the latest observations of the atmospheric temperature and radiative fluxes at TOA. The comparisons demonstrate that the choice of PSD and the assumed ice crystal shape distribution are as important as each other. Moreover, the consistent radiation parameterization removes a long-standing tropical troposphere cold temperature bias but slightly warms the southern midlatitudes by about 0.5 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of two different coupled cirrus microphysics-radiation parameterizations on the zonally averaged temperature and humidity biases in the tropical tropopause layer (TTL) of a Met Office climate model configuration is assessed. One parameterization is based on a linear coupling between a model prognostic variable, the ice mass mixing ratio, qi, and the integral optical properties. The second is based on the integral optical properties being parameterized as functions of qi and temperature, Tc, where the mass coefficients (i.e. scattering and extinction) are parameterized as nonlinear functions of the ratio between qi and Tc. The cirrus microphysics parameterization is based on a moment estimation parameterization of the particle size distribution (PSD), which relates the mass moment (i.e. second moment if mass is proportional to size raised to the power of 2 ) of the PSD to all other PSD moments through the magnitude of the second moment and Tc. This same microphysics PSD parameterization is applied to calculate the integral optical properties used in both radiation parameterizations and, thus, ensures PSD and mass consistency between the cirrus microphysics and radiation schemes. In this paper, the temperature-non-dependent and temperature-dependent parameterizations are shown to increase and decrease the zonally averaged temperature biases in the TTL by about 1 K, respectively. The temperature-dependent radiation parameterization is further demonstrated to have a positive impact on the specific humidity biases in the TTL, as well as decreasing the shortwave and longwave biases in the cloudy radiative effect. The temperature-dependent radiation parameterization is shown to be more consistent with TTL and global radiation observations.