24 resultados para PRECIPITATE
em CentAUR: Central Archive University of Reading - UK
Resumo:
Abstract BACKGROUND Tannins can bind to and precipitate protein by forming insoluble complexes resistant to fermentation and with a positive effect on protein utilisation by ruminants. Three protein types, Rubisco, rapeseed protein and bovine serum albumin (a single high-molecular weight protein), were used to test the effects of increasing concentrations of structurally different condensed tannins on protein solubility/precipitation. RESULTS Protein type (PT) influenced solubility after addition of condensed tannins (P < 0.001) in the order: Rubisco < rapeseed < BSA (P < 0.05). The type of condensed tannin (CT) affected protein solubility (P = 0.001) with a CT × PT interaction (P = 0.001). Mean degree of polymerisation, proportions of cis- versus trans-flavanol subunits or prodelphinidins versus procyanidins among CTs could not explain precipitation capacities. Increasing tannin concentration decreased protein solubility (P < 0.001) with a PT × CT concentration interaction. The proportion of low-molecular weight rapeseed proteins remaining in solution increased with CT concentration but not with Rubisco. CONCLUSIONS Results of this study suggest that PT and CT type are both of importance for protein precipitation but that the CT structures investigated did not allow identification of parameters that contribute most to precipitation. It is possible that the three-dimensional structures of tannins and proteins may be more important factors in tannin–protein interactions. © 2013 Society of Chemical Industry
Resumo:
Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.
Resumo:
Surface coatings are very common on mineral grains in soils but most laboratory dissolution experiments are carried out on pristine, uncoated mineral grains. An experiment designed to unambiguously isolate the effect of surface coatings on mineral dissolution from any influence of solution saturation state is reported. Two aliquots of 53 to 63 mum anorthite feldspar powder were used. One was dissolved in pH 2.6 HCl, the other in pH 2.6 FeCl3 solution, both for similar to6000 h in flow-through reactors. An amorphous Fe-rich, Al-, Ca- and Si-free orange precipitate coated the anorthite dissolved in the FeCl3 solution. BET surface area of the anorthite increased from 0.16 to 1.65 m(2) g(-1) in the HCl experiment and to 3.89 m(2) g(-1) in the FeCl3 experiment. The increase in surface area in the HCl experiment was due to the formation of etch pits on the anorthite grain surface whilst the additional increase in the FeCl3 experiment was due to the micro- and meso-porous nature of the orange precipitate. This precipitate did not inhibit or slow the dissolution of the anorthite. Steady state dissolution rates for the anorthite dissolved in the HCl and FeCl3 were similar to2.5 and 3.2 X 10(-10) mol(feldspar) m(-2) s(-1) respectively. These rates are not significantly different after the cumulative uncertainty of 17% in their value due to uncertainty in the inputs parameters used in their calculation is taken into account. Results from this experiment support previous theoretical and inference-based conclusions that porous coatings should not inhibit mineral dissolution. Copyright (C) 2003 Elsevier Ltd.
Resumo:
A set of free-drift experiments was undertaken to synthesize carbonates of mixed cation content (Fe, Ca, Mg) from solution at 25 and 70 degrees C to better understand the relationship between the mineralogy and composition of these phases and the solutions from which they precipitate. Metastable solid solutions formed at 25 degrees C which are not predicted from the extrapolation of higher temperature equilibrium assemblages; instead, solids formed that were intermediary in chemical composition to known magnesite-siderite and dolomite solid solutions. A calcite-siderite solid solution precipitated at 25 degrees C, with the percentage of CaCO3 in the solid being proportional to the aqueous Ca/Fe ratio of the solution, while Mg was excluded from the crystal structure except at relatively high aqueous Mg/Ca and Mg/Fe ratios and a low Ca content. Alternatively, at 70 degrees C Mg was the predominant cation of the solid solutions. These results are compatible with the hypothesis that the relative dehydration energies of Fe, Ca and Mg play an important role in the formation of mixed cation carbonates in nature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.
Resumo:
It is generally thought that catalysts produced by incipient wetness impregnation (IW) are very poor for low temperature CO oxidation, and that it is necessary to use methods such as deposition-precipitation (DP) to make high activity materials. The former is true, indeed such IW catalysts are poor, and we present reactor data, XPS and TEM analysis which show that this is due to the very negative effect of the chloride anion involved in the preparation, which results in poisoning and excessive sintering of the Au particles. With the DP method, the chloride is largely removed during the preparation and so poisoning and sintering are avoided. However, we show here that, contrary to previous considerations, high activity catalysts can indeed be prepared by the incipient wetness method, if care is taken to remove the chloride ion during the process. This is achieved by using the double impregnation method (DIM). In this a double impregnation of chloroauric acid and a base are made to precipitate out gold hydroxide within the pores of the catalyst, followed by limited washing. This results in a much more active catalyst, which is active for CO oxidation at ambient temperature. The results for DIM and DP are compared, and it is proposed that the DIM method may represent an environmentally and economically more favorable route to high activity gold catalyst production. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A commercial dodecylbenzene (DDB) cable oil was aged at temperatures between 90 and 135 degrees C in air and was analyzed using various analytical techniques including optical and infra-red spectroscopy and dielectric analysis. On ageing, the oil darkened, significant oxidation features were found by infra-red spectroscopy and the acid number, water content and dielectric loss all increased. Ageing in the presence of paper or aluminum did not affect the ageing process, whereas ageing was significantly modified by the presence of copper. An absorption at 680 nm ("red absorbers") was detected by ultra-violet/visible spectroscopy followed by the production of an opaque precipitate. A reaction between copper and the acid generated on ageing is thought to produce copper carboxylates, and X-ray fluorescence confirmed that copper was indeed present in both the aged oil and the precipitate. Significantly, once red absorbers were detected, the dielectric loss increased to catastrophically high values and, therefore, the appearance of these compounds may serve as a useful diagnostic indicator. The development of acidity on ageing appears to be key in initiating the destructive copper conversion reaction and hence the control of oil acidity may be key to prolonging the life of DDB cable oils.
Resumo:
The linear isomer of dodecylbenzene (DDB), 1-phenyldodecane, was aged at temperatures of 105 and 135 degrees C in air and the resultant products were analyzed using a range of analytical techniques. On ageing, the 1-phenyldodecane darkened, the acid number, dielectric loss and water content increased and significant oxidation peaks were detected in the infrared spectrum. When aged in the presence of copper, a characteristic peak at 680 nm was also detected by UV/visible spectroscopy but, compared with previous studies of a cable-grade DDB, the strength of this peak was much increased and no appreciable precipitate formation occurred. At the same time, very high values of dielectric loss were recorded. On ageing in the absence of copper, an unusually strong infrared carbonyl band was seen, which correlates well with the detection of dodecanophenone by gas chromatography / mass spectrometry and nuclear magnetic resonance spectroscopy. It was therefore concluded that the ageing process proceeds via the initial production of aromatic ketones, which may then be further oxidized to carboxylic acids. In the presence of copper, these oxidation products are present in lower quantities, most of these oxidation products being combined with the copper present in the oil to give copper carboxylates. The behavior is described in terms of a complex autoxidation mechanism, in which copper acts as both an oxidizing and a reducing agent, depending on its oxidation state and, in particular, promotes elimination via the oxidation of intermediate alkyl radical species to carbocations.
Resumo:
In this work we describe the synthesis of a variety of MCM-41 type hexagonal and SBA-1 type cubic mesostructures and mesoporous silicious materials employing a novel synthesis concept based on polyacrylic acid (Pac)-C(n)TAB complexes as backbones of the developing structures. The ordered porosity of the solids was established by XRD and TEM techniques. The synthesis concept makes use of Pac-C(n)TAB nanoassemblies as a preformed scaffold, formed by the gradual increase of pH. On this starting matrix the inorganic precursor species SiO2 precipitate via hydrolysis of TEOS under the influence of increasing pH. The molecular weight (MW) of Pac, as well as the length of carbon chain in C,TAB, determine the physical and structural characteristics of the obtained materials. Longer chain surfactants (C(16)TAB) lead to the formation of hexagonal phase, while shorter chain surfactants (C(14)TAB, C(12)TAB) favor the SBA-1 phase. Lower MW of Pac (approximate to2000) leads to better-organized structures compared to higher MW ( 450,000), which leads to worm-like mesostructures. Cell parameters and pore size increase with increasing polyelectrolyte and/or surfactant chain, while at the same time SEM photography reveals that the particle size decreases. Conductivity experiments provide some insight into the proposed self-assembling pathway. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Oxymyoglobin in aqueous extracts of fresh beef longissimus dorsi muscles was initially oxidised to metmyoglobin during heat treatments at temperatures in the range 50-70 degreesC. The metmyoglobin then underwent reduction to a red pigment that was shown spectrally to be identical to oxymyoglobin. The formation of oxymyoglobin involved a heat induced precipitate that when removed from the solution, allowed oxidation to metmyoglobin to occur. However, on re-addition of the precipitate further reduction to oxymyoglobin took place. Dialysis of the muscle extract prior to heating markedly inhibited the reduction but addition of NADH to the dialysate permitted further reduction. The precipitate plus NADH caused oxymyoglobin formation in the presence of metmyoglobin but neither the precipitate nor NADH alone induced this formation. It is concluded that the initial conversion of oxymyoglobin to metmyoglobin on heating fresh beef muscle extracts was reversible and that the reverse reaction depended on the presence of both NADH and a muscle protein.
Resumo:
The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M-CTAB/M-TP) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M-CTAB/M-TP = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Mixing of aqueous solutions of poly(acrylic acid) and (hydroxypropyl) cellulose results in formation of hydrogen-bonded interpolymer complexes, which precipitate and do not allow preparation of homogeneous polymeric films by casting. In the present work the effect of pH on the complexation between poly(acrylic acid) and (hydroxypropyl)cellulose in solutions and miscibility of these polymers in solid state has been studied. The pH-induced complexation-miscibility-immiscibility transitions in the polymer mixtures have been observed. The optimal conditions for preparation of homogeneous polymeric films based on blends of these polymers have been found, and the possibility of radiation cross-linking of these materials has been demonstrated. Although the gamma-radiation treatment of solid polymeric blends was found to be inefficient, successful cross-linking was achieved by addition of N, N'- methylenebis(acrylamide). The mucoadhesive potential of both soluble and cross-linked films toward porcine buccal mucosa is evaluated. Soluble films adhered to mucosal tissues undergo dissolution within 30-110 min depending on the polymer ratio in the blend. Cross-linked films are retained on the mucosal surface for 10-40 min and then detach.
Resumo:
We study the effects of NaCl on the self-assembly of AAKLVFF and beta A beta AKLVFF in solution. Both AAKLVFF and beta A beta AKLVFF self-assemble into twisted fibers in aqueous solution. The addition of NaCl to aqueous solutions of AAKLVFF produces large crystal-like nanotapes which eventually precipitate. In contrast, highly twisted fibrils were observed for beta A beta AKLVFF solutions at low salt concentration, while a coexistence of highly twisted fibers and nanotubes was observed for beta A beta AKLVFF at high salt concentration. The self-assembled structures observed for beta A beta AKLVFF in NaCl solutions were ascribed to the progressive screening of the beta A beta AKLVFF surface charge caused by the addition of salt.
Resumo:
A method has been developed which enables the easy and inexpensive preparation of gram quantities of (–)-epigallocatechin gallate from green tea (Camellia sinensis). A decaffeinated aqueous brew of commercial green tea is treated with caffeine (30 m ). The precipitate is redissolved after decaffeination with chloroform and further purified by solvent partition with ethyl hexanoate and propyl acetate. Commercial leaf (25 g) yields 400 mg (–)-epigallocatechin gallate at better than 80% purity, as judged by reversed phase HPLC.
Resumo:
The application of oxygen isotope ratios ({delta}18O) from freshwater bivalves as a proxy for river discharge conditions in the Rhine and Meuse rivers is investigated. We compared a dataset of water temperature and water {delta}18O values with a selection of recent shell {delta}18O records for two species of the genus Unio in order to establish: (1) whether differences between the rivers in water {delta}18O values, reflecting river discharge conditions, are recorded in unionid shells; and (2) to what extent ecological parameters influence the accuracy of bivalve shell {delta}18O values as proxies of seasonal, water oxygen isotope conditions in these rivers. The results show that shells from the two rivers differ significantly in {delta}18O values, reflecting different source waters for these two rivers. The seasonal shell {delta}18O records show truncated sinusoidal patterns with narrow peaks and wide troughs, caused by temperature fractionation and winter growth cessation. Interannual growth rate reconstructions show an ontogenetic growth rate decrease. Growth lines in the shell often, but not always, coincide with winter growth cessations in the {delta}18O record, suggesting that growth cessations in the shell {delta}18O records are a better age estimator than counting internal growth lines. Seasonal predicted and measured {delta}18O values correspond well, supporting the hypothesis that these unionids precipitate their shells in oxygen isotopic equilibrium. This means that (sub-) fossil unionids can be used to reconstruct spring-summer river discharge conditions, such as Meuse low-discharge events caused by droughts and Rhine meltwater-influx events caused by melting of snow in the Alps.