8 resultados para POPULATION SYNTHESIS
em CentAUR: Central Archive University of Reading - UK
Resumo:
1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviourbased models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley’s declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.
Resumo:
1. Population growth rate (PGR) is central to the theory of population ecology and is crucial for projecting population trends in conservation biology, pest management and wildlife harvesting. Furthermore, PGR is increasingly used to assess the effects of stressors. Image analysis that can automatically count and measure photographed individuals offers a potential methodology for estimating PGR. 2. This study evaluated two ways in which the PGR of Daphnia magna, exposed to different stressors, can be estimated using an image analysis system. The first method estimated PGR as the ratio of counts of individuals obtained at two different times, while the second method estimated PGR as the ratio of population sizes at two different times, where size is measured by the sum of the individuals' surface areas, i.e. total population surface area. This method is attractive if surface area is correlated with reproductive value (RV), as it is for D. magna, because of the theoretical result that PGR is the rate at which the population RV increases. 3. The image analysis system proved reliable and reproducible in counting populations of up to 440 individuals in 5 L of water. Image counts correlated well with manual counts but with a systematic underestimate of about 30%. This does not affect accuracy when estimating PGR as the ratio of two counts. Area estimates of PGR correlated well with count estimates, but were systematically higher, possibly reflecting their greater accuracy in the study situation. 4. Analysis of relevant scenarios suggested the correlation between RV and body size will generally be good for organisms in which fecundity correlates with body size. In these circumstances, area estimation of PGR is theoretically better than count estimation. 5. Synthesis and applications. There are both theoretical and practical advantages to area estimation of population growth rate when individuals' reproductive values are consistently well correlated with their surface areas. Because stressors may affect both the number and quality of individuals, area estimation of population growth rate should improve the accuracy of predicting stress impacts at the population level.
Resumo:
1. To understand population dynamics in stressed environments it is necessary to join together two classical lines of research. Population responses to environmental stress have been studied at low density in life table response experiments. These show how the population's growth rate (pgr) at low density varies in relation to levels of stress. Population responses to density, on the other hand, are based on examination of the relationship between pgr and population density. 2. The joint effects of stress and density on pgr can be pictured as a contour map in which pgr varies with stress and density in the same way that the height of land above sea level varies with latitude and longitude. Here a microcosm experiment is reported that compared the joint effects of zinc and population density on the pgr of the springtail Folsomia candida (Collembola). 3. Our experiments allowed the plotting of a complete map of the effects of density and a stressor on pgr. Particularly important was the position of the pgr= 0 contour, which suggested that carrying capacity varied little with zinc concentration until toxic levels were reached. 4. This prediction accords well with observations of population abundance in the field. The method also allowed us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence. 5. The mechanisms responsible for these phenomena are discussed. As zinc is an essential trace element the initial increase in pgr is probably a consequence of dietary zinc deficiency. The Allee effect may be attributed to productivity of the environment increasing with density at low density. Density dependence is a result of food limitation. 6. Synthesis and applications. We illustrate a novel solution based on mapping a population's growth rate in relation to stress and population density. Our method allows us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence in an important ecological indicator species. We hope that the approach followed here will prove to have general applicability enabling predictions of field abundance to be made from estimates of the joint effects of the stressors and density on population growth rate.
Resumo:
1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviour-based models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley's declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.
Resumo:
1. Chemical effects on organisms are typically assessed using individual-level endpoints or sometimes population growth rate (PGR), but such measurements are generally made at low population densities. In contrast most natural populations are subject to density dependence and fluctuate around the environmental carrying capacity as a result of individual competition for resources. As ecotoxicology aims to make reliable population projections of chemical impacts in the field, an understanding of how high-density or resource-limited populations respond to environmental chemicals is essential. 2. Our objective was to determine the joint effects of population density and chemical stress on the life history and PGR of an important ecotoxicological indicator species, Chironomus riparius, under controlled laboratory conditions. Populations were fed the same ration but initiated at different densities and exposed to a solvent control and three concentrations of C-14-cypermethrin in a sediment-water test system for 67 days at 20 +/- 1 degreesC. 3. Density had a negative effect on all the measured life-history traits, and PGR declined with increasing density in the controls. Exposure to C-14-cypermethrin had a direct negative effect on juvenile survival, presumably within the first 24 h because the chemical rapidly dissipated from the water column. Reductions in the initial larval densities resulted in an increase in the available resources for the survivors. Subsequently, exposed populations emerged sooner and started producing offspring earlier than the controls. C-14-cypermethrin had no effect on estimated fecundity and adult body weight but interacted with density to reduce the time to first emergence and first reproduction. As a result, PGR increased with cypermethrin concentration when populations were initiated at high densities. 4. Synthesis and applications. The results showed that the effects of C-14-cypermethrin were buffered at high density, so that the joint effects of density and chemical stress on PGR were less than additive. Low levels of chemical stressors may increase carrying capacity by reducing juvenile competition for resources. More and perhaps fitter adults may be produced, similar to the effects of predators and culling; however, toxicant exposure may result in survivors that are less tolerant to changing conditions. If less than additive effects are typical in the field, standard regulatory tests carried out at low density may overestimate the effects of environmental chemicals. Further studies over a wide range of chemical stressors and organisms with contrasting life histories are needed to make general recommendations.
Resumo:
Psoriasis is a common, chronic and relapsing inflammatory skin disease. It affects approximately 2% of the western population and has no cure. Combination therapy for psoriasis often proves more efficacious and better tolerated than monotherapy with a single drug. Combination therapy could be administered in the form of a co-drug, where two or more therapeutic compounds active against the same condition are linked by a cleavable covalent bond. Similar to the pro-drug approach, the liberation of parent moieties post-administration, by enzymatic and/or chemical mechanisms, is a pre-requisite for effective treatment. In this study, a series of co-drugs incorporating dithranol in combination with one of several non-steroidal anti-inflammatory drugs, both useful for the treatment of psoriasis, were designed, synthesized and evaluated. An ester co-drug comprising dithranol and naproxen in a 1:1 stoichiometric ratio was determined to possess the optimal physicochemical properties for topical delivery. The co-drug was fully hydrolyzed in vitro by porcine liver esterase within four hours. When incubated with homogenized porcine skin, 9.5% of the parent compounds were liberated after 24 h, suggesting in situ esterase-mediated cleavage of the co-drug would occur within the skin. The kinetics of the reaction revealed first order kinetics, Vmax = 10.3 μM/min and Km = 65.1 μM. The co-drug contains a modified dithranol chromophore that was just 37% of the absorbance of dithranol at 375 nm and suggests reduced skin/clothes staining. Overall, these findings suggest that the dithranol-naproxen co-drug offers an attractive, novel approach for the treatment of psoriasis.
Resumo:
1.Habitat conversion for agriculture is a major driver of biodiversity loss, but our understanding of the demographic processes involved remains poor. We typically investigate the impacts of agriculture in isolation even though populations are likely to experience multiple, concurrent changes in the environment (e.g. land and climate change). Drivers of environmental change may interact to affect demography but the mechanisms have yet to be explored fully in wild populations. 2.Here, we investigate the mechanisms linking agricultural land-use with breeding success using long-term data for the formerly Critically Endangered Mauritius kestrel Falco punctatus; a tropical forest specialist that also occupies agricultural habitats. We specifically focused on the relationship between breeding success, agriculture and the timing of breeding because the latter is sensitive to changes in climatic conditions (spring rainfall), and enables us to explore the interactive effects of different (land and climate) drivers of environmental change. 3.Breeding success, measured as egg survival to fledging, declines seasonally in this population, but we found that the rate of this decline became increasingly rapid as the area of agriculture around a nest site increased. If the relationship between breeding success and agriculture was used in isolation to estimate the demographic impact of agriculture it would significantly under-estimate breeding success in dry (early) springs, and over-estimate breeding success in wet (late) springs. 4.Analysis of prey delivered to nests suggests that the relationship between breeding success and agriculture might be due, in part, to spatial variation in the availability of native, arboreal geckos. 5.Synthesis and applications. Agriculture modifies the seasonal decline in breeding success in this population. As springs are becoming wetter in our study area and since the kestrels breed later in wetter springs, the impact of agriculture on breeding success will become worse over time. Our results suggest that forest restoration designed to reduce the detrimental impacts of agriculture on breeding may also help reduce the detrimental effects of breeding late due to wetter springs. Our results therefore highlight the importance of considering the interactive effects of environmental change when managing wild populations.
Resumo:
This work describes syntheses and electrochemical, spectroscopic, and bonding properties in a new series of dinuclear ruthenium(II) complexes bridged by polyaromatic (biphenyl, fluorene, phenanthrene, and pyrene) alkynyl ligands. Longitudinal expansion of the π-conjugated polyaromatic core of the bridging ligands caused a reduced potential difference between the anodic steps and reinforced their bridge-localized nature, as evidenced by UV/vis/near-IR and IR spectroelectrochemical data combined with DFT and TDDFT calculations. Importantly, the intricate multiple IR ν(CC) absorption bands for the singly oxidized states imply a thermal population of a range of conformers (rotamers) with distinct electronic character. This behavior was demonstrated with more accurate DFT calculations of selected nontruncated 1e− oxidized complexes in three different conformations. The combined experimental and theoretical data reveal that thermally populated rotamers featuring various mutual orientations of the ligated metal termini and the bridging diethynyl polyaromatic moieties have a significant impact on the electronic absorption and ν(CC) wavenumbers of the singly oxidized systems.