3 resultados para PONY MARES

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endogenous formation of N-nitroso compounds (NOCs), which are known animal carcinogens, could contribute to human carcinogenesis but definitive evidence is still lacking. To investigate the relevance of NOCs in human colorectal cancer (CRC) development, we analyzed whole genome gene expression modifications in human colon biopsies in relation to fecal NOC exposure. We had a particular interest in patients suffering from intestinal inflammation as this may stimulate endogenous NOC formation, and consequently predispose to CRC risk. Inflammatory bowel disease (IBD) patients diagnosed with ulcerative colitis and irritable bowel syndrome patients without inflammation, serving as controls, were therefore recruited. Fecal NOC were demonstrated in the majority of subjects. By associating gene expression levels of all subjects to fecal NOC levels, we identified a NOC exposure-associated transcriptomic response that suggests that physiological NOC concentrations may potentially induce genotoxic responses and chromatin modifications in human colon tissue, both of which are linked to carcinogenicity. In a network analysis, chromatin modifications were linked to 11 significantly modulated histone genes, pointing towards a possible epigenetic mechanism that may be relevant in comprehending NOC-induced carcinogenesis. In addition, pro-inflammatory transcriptomic modifications were identified in visually non-inflamed regions of the IBD colon. However, fecal NOC levels were slightly but not significantly increased in IBD patients, suggesting that inflammation did not strongly stimulate NOC formation. We conclude that NOC exposure is associated with gene expression modifications in the human colon that may suggest a potential role of these compounds in CRC development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat consumption on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to genome-wide transcriptomic changes induced in colonic tissue. The intervention showed no effect on fecal NOC excretion but fecal water genotoxicity significantly increased in response to red meat intake. Colonic inflammation caused by inflammatory bowel disease, which has been suggested to stimulate endogenous nitrosation, did not influence fecal NOC excretion or fecal water genotoxicity. Transcriptomic analyses revealed that genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage repair, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated which are implicated in human CRC development. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a potentially increased CRC risk in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three strains of a Gram-positive, catalase-positive, fermentative, non-lipophilic, previously unknown bacterium were isolated from urogenital samples taken from mares in Scotland (M401624/00/1) and Sweden (VM 2074 and VM 2298T). All were deposited with the CCUG with tentative identifications as Corynebacterium spp. The strains were characterized using a polyphasic taxonomic approach. Biochemically, the strains were very similar to each other, but phylogenetically distinct from Corynebacterium species with validly published names (≤95% sequence similarity). rpoB gene sequence data confirmed the strains belonged to the same species (>99% sequence similarity) and were distinct from species with validly published names (>13% sequence divergence). On the basis of phenotypic and sequence data, the strains represent a novel species within the genus Corynebacterium, for which the name Corynebacterium uterequi is proposed. The type strain is VM 2298T (=CCUG 61235T = DSM 45634T), isolated from equine uterus.