9 resultados para PHOTODYNAMIC THERAPY USE

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Evidence is limited on the effects of different patterns of use of postmenopausal hormone therapy on fracture incidence and particularly on the effects of ceasing use. Objective: To investigate the effect of different patterns of hormone therapy use on fracture incidence. Design, Setting, and Participants: Prospective study of 138737 postmenopausal women aged 50 to 69 years recruited from the UK general population in 19961998 (the Million Women Study) and followed up for 1.9 to 3.9 years (average, 2.8 years) for fracture incidence. Main Outcome Measure: Adjusted relative risk (RR) for incident fracture (except fracture of the fingers, toes, and ribs) in hormone therapy users compared with never users at baseline. Results: A total of 5197 women (3.7%) reported 1 or more fractures, 79% resulting from falls. Current users of hormone therapy at baseline had a significantly reduced incidence of fracture (RR, 0.62; 95% confidence interval [CI], 0.58-0.66; P<.001). This protection was evident soon after hormone therapy began, and the RR decreased with increasing duration of use (P=.001). Among current users at baseline the RR of fracture did not vary significantly according to whether estrogen-only, estrogen-progestin, or other types of hormones were used (RR [95% CI], 0.64 [0.58-0.71], 0.58 [0.53-0.64], and 0.67 [0.56-0.80], respectively; P=19), nor did it vary significantly according to estrogen dose or estrogen or progestin constituents. The RR associated with current use of hormone therapy did not vary significantly according to 11 personal characteristics of study participants, including their age at menopause, body mass index, and physical activity. Past users of hormone therapy at baseline experienced no significant protection against fractures (RR, 1.07; 95% CI, 0.99-1.15); incidence rates returned to those of never-users within about a year of ceasing use. Conclusions: All types of hormone therapy studied confer substantial protection against fracture while they are used. This protection appears rapidly after use commences and wears off rapidly after use ceases. The older women are, the greater is their absolute reduction in fracture incidence while using hormone therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since 1998, the Aurora project has been investigating the use of a robotic platform as a tool for therapy use with children with autism. A key issue in this project is the evaluation of the interactions, which are not constricted and involve the child moving freely. Additionally, the response of the children is an important factor which must emerge from the robot trial sessions and the evaluation methodology, in order to guide further development work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increasing use of drug combinations to treat disease states, such as cancer, calls for improved delivery systems that are able to deliver multiple agents. Herein, we report a series of novel Janus dendrimers with potential for use in combination therapy. Different generations (first and second) of PEG-based dendrons containing two different “model drugs”, benzyl alcohol (BA) and 3-phenylpropionic acid (PPA), were synthesized. BA and PPA were attached via two different linkers (carbonate and ester, respectively) to promote differential drug release. The four dendrons were coupled together via (3 + 2) cycloaddition chemistries to afford four Janus dendrimers, which contained varying amounts and different ratios of BA and PPA, namely, (BA)2-G1-G1-(PPA)2, (BA)4-G2-G1-(PPA)2, (BA)2-G1-G2-(PPA)4, and (BA)4-G2-G2-(PPA)4. Release studies in plasma showed that the dendrimers provided sequential release of the two model drugs, with BA being released faster than PPA from all of the dendrons. The different dendrimers allowed delivery of increasing amounts (0.15–0.30 mM) and in exact molecular ratios (1:2; 2:1; 1:2; 2:2) of the two model drug compounds. The dendrimers were noncytotoxic (100% viability at 1 mg/mL) toward human umbilical vein endothelial cells (HUVEC) and nontoxic toward red blood cells, as confirmed by hemolysis studies. These studies demonstrate that these Janus PEG-based dendrimers offer great potential for the delivery of drugs via combination therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Efficient transport of stem/progenitor cells without affecting their survival and function is a key factor in any practical cell-based therapy. However, the current approach using liquid nitrogen for the transfer of stem cells requires a short delivery time window is technically challenging and financially expensive. The present study aims to use semipermeable alginate hydrogels (crosslinked by strontium) to encapsulate, store, and release stem cells, to replace the conventional cryopreservation method for the transport of therapeutic cells within world-wide distribution time frame. Human mesenchymal stem cell (hMSC) and mouse embryonic stem cells (mESCs) were successfully stored inside alginate hydrogels for 5 days under ambient conditions in an air-tight environment (sealed cryovial). Cell viability, of the cells extracted from alginate gel, gave 74% (mESC) and 80% (hMSC) survival rates, which compared favorably to cryopreservation. More importantly, the subsequent proliferation rate and detection of common stem cell markers (both in mRNA and protein level) from hMSCs and mESCs retrieved from alginate hydrogels were also comparable to (if not better than) results gained following cryopreservation. In conclusion, this new and simple application of alginate hydrogel encapsulation may offer a cheap and robust alternative to cryopreservation for the transport and storage of stem cells for both clinical and research purposes.