8 resultados para PHOTOCHEMICAL PROPERTIES
em CentAUR: Central Archive University of Reading - UK
Resumo:
Electrochemical and photochemical properties of the tetrahedral cluster [Ru3Ir(mu(3)-H)(CO)(13)] were studied in order to prove whether the previously established thermal conversion of this cluster into the hydrogenated derivative [Ru3Ir(mu-H)(3)(CO)(12)] also occurs by means of redox or photochemical activation. Two-electron reduction of [Ru3Ir(mu(3)-H)(CO)(13)] results in the loss of CO and concomitant formation of the dianion [Ru3Ir(mu(3)-H)(CO)(12)](2-). The latter reduction product is stable in CH2Cl2 at low temperatures but becomes partly protonated above 283 K into the anion [Ru3Ir(mu-H)(2)(CO)(12)](-) by traces of water. The dianion [Ru3Ir(mu(3)-H)(CO)(12)](2-) is also the product of the electrochemical reduction of [Ru3Ir(mu-H)(3)(CO)(12)] accompanied by the loss of H-2. Stepwise deprotonation of [Ru3Ir(mu-H)(3)(CO)(12)] with Et4NOH yields [Ru3Ir(mu-H)(2)(CO)(12)](-) and [Ru3Ir(mu(3)-H)(CO)(12)](2-). Reverse protonation of the anionic clusters can be achieved, e. g., with trifluoromethylsulfonic acid. Thus, the electrochemical conversion of [Ru3Ir(mu(3)-H)(CO)(13)] into [Ru3Ir(mu-H)(3)(CO)(12)] is feasible, demanding separate two-electron reduction and protonation steps. Irradiation into the visible absorption band of [Ru3Ir(mu3-H)(CO)(13)] in hexane does not induce any significant photochemical conversion. Irradiation of this cluster in the presence of CO with lambda(irr) > 340 nm, however, triggers its efficient photofragmentation into reactive unsaturated ruthenium and iridium carbonyl fragments. These fragments are either stabilised by dissolved CO or undergo reclusterification to give homonuclear clusters. Most importantly, in H-2-saturated hexane, [Ru3Ir(mu(3)-H)(CO)(13)] converts selectively into the [Ru3Ir(mu-H)(3)(CO)(12)] photoproduct. This conversion is particularly efficient at lambda(irr) > 340 nm.
Resumo:
The synthesis of photochemical properties of a range of arylpropenoates are described and their suitability as photoactive units for the reversible manipulation of polymer properties assessed. The Z and E isomers of the 1-naphthyl-, 1-(4-methoxynaphthyl)- and 9-phenanthryl- derivatives have sufficiently different absorption characteristics to allow their selective exciation to give photostationary states having high concentrations of each isomer. Incorporation of the photoactive units into methacrylate based polymers changes the photostationary state concentrations of the Z and E isomers but the effect on the 1-(4-methoxynaphthyl)-derivative is small and here the photointerconversion is not accompanied by fatigue. The 9-anthryl derivative undergoes facile (4π + 4π) photodimerization and this may have potential as a reversible crosslinking mechanism.
Resumo:
Fulgimides monosubstituted with [M(bpy)(3)](2+) (M = Ru, Os; bpy = 2,2'-bipyridine) chromophore units and with a single bpy group were synthesized and investigated as components of conceivable dinuclear photochromic switches of luminescence. The E-, Z- and closed-ring (C) photoisomer forms of the bpy-bound fulgimide were successfully separated by semi-preparative HPLC. The same procedure failed, however, in the case of the [M(bpy)(3)](2+)-substituted fulgimides. Energy transfer from the excited photochromic unit to the metal-bpy centre competes with the fulgimide cyclization, reducing the photocyclization quantum yields by approximately one order of magnitude compared to the non-complexed fulgimide-bpy ligand (phi(EC) = 0.17, phi(EZ) = 0.071, phi(ZE) = 0.15 at lambda(exc) = 334 nm). The cycloreversion of the fulgimide-bpy ligand is less efficient (phi(CE) = 0.047 at lambda(exc) = 520 nm). The intensity of the (MLCT)-M-3-based luminescence of the metal-bpy chromophore (in MeCN, phi(deaer) = 6.6 x 10(-2) and tau(deaer) = 1.09 mu s for Ru; phi(deaer) = 6.7 x 10(-3) and tau(deaer) = 62 ns for Os) is not affected by the fulgimide photoconversion. These results and supporting spectro-electrochemical data reveal that the lowest triplet excited states of the photochromic fulgimide moiety in all its E-, Z- and closed-ring forms lie above the lowest 3MLCT levels of the attached ruthenium and osmium chromophores. The actual components are therefore unlikely to form a triad acting as functional switch of energy transfer from [Ru(bpy)(3)](2+) to [Os(bpy)(3)](2+) through the photochromic fulgimide bridge.
Resumo:
Photochromic nitrospiropyrans substituted with 2,2'-bipyridine (bpy), [Ru(bpy)(3)](2+), and [Os(bpy)(3)](2+) groups were synthesized, and their photophysical, photochemical, and redox properties investigated. Substitution of the spiropyran with the metal complex moiety results in strongly decreased efficiency of the ring-opening process as a result of energy transfer from the excited spiropyran to the metal center. The lowest excited triplet state of the spiropyran in its open merocyanine form is lower in energy than the excited triplet MLCT level of the [Ru(bpy)(3)](2+) moiety but higher in energy than for [Os(bpy)(3)](2+), resulting in energy transfer from the excited ruthenium center to the spiropyran but inversely in the osmium case. The open merocyanine form reduces and oxidizes electrochemically more easily than the closed nitrospiropyran. Like photoexcitation, electrochemical activation also causes opening of the spiropyran ring by first reducing the closed form and subsequently reoxidizing the corresponding radical anion in two well-resolved anodic steps. Interestingly, the substitution of the spiropyran with a Ru or Os metal center does not affect the efficiency of this electrochemically induced ring-opening process, different from the photochemical path.
Resumo:
Two Multifunctional photoactive complexes [Re(Cl)(CO)(3)-(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+) = N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy = 2,2'-bipyridine) were synthesized. characterized. and their redox and photonic properties were investigated by cyclic voltammetry: ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions: and time-resolved resonance Raman spectroscopy. The first reduction step of either complex Occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans -> cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3) -> MeDpe(+) (MLCT)-M-3 (MLCT = metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximate to 42 (73%) and approximate to 430ps (27%). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3) -> MeDpe(+) and Re(CO)(3) -> bpy (MLCT)-M-3 states, from which a MeDpe(+) localized intraligand 3 pi pi* excited state ((IL)-I-3) is populated with lifetimes of approximate to 0.6 and approximate to 10 ps, respectively. The 3IL state undergoes a approximate to 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle Structural variations. The complex [Re(MeDpe+)(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.
Resumo:
Aimed at creating a true photoswitchable energy transfer system, four dinuclear complexes containing ruthenium(II) and osmium(II) metal centers bridged by spiropyran-type linkers were designed and investigated. The bridge in its closed spiropyran form was shown to be a good insulator for energy transfer between the Ru-bpy donor and the Os-bpy acceptor (bpy = 2,2'-bipyridine). On the basis of properties of previously reported photochromic nitrospiropyrans substituted with a single polypyridine metal center, conversion of the bridge to the open merocyanine form was envisaged to result in efficient electronic energy transfer by a sequential ("hopping") mechanism. In contrast to the expectations, however, the studied closed-form dinuclear complexes remained stable independently of their photochemical or electrochemical activation. This difference in reactivity is attributed to the replacement of the nitro group by a second polypyridine metal center. We assume that these changes have fundamentally altered the excited-state and redox properties of the complexes, making the ring-opening pathways unavailable.
Resumo:
DFT and TD-DFT calculations (ADF program) were performed in order to analyze the electronic structure of the [M-3(CO)(12)] clusters (M = Ru, Os) and interpret their electronic spectra. The highest occupied molecular orbitals are M-M bonding (sigma) involving different M-M bonds, both for Ru and Os. They participate in low-energy excitation processes and their depopulation should weaken M-M bonds in general. While the LUMO is M-NI and M-CO anti-bonding (sigma*), the next, higher-lying empty orbitals have a main contribution from CO (pi*) and either a small (Ru) or an almost negligible one (Os) from the metal atoms. The main difference between the two clusters comes from the different nature of these low-energy unoccupied orbitals that have a larger metal contribution in the case of ruthenium. The photochemical reactivity of the two clusters is reexamined and compared to earlier interpretations.
Resumo:
The experiments were designed to use photochemically cross-linked plastically compressed collagen (PCPCC) gel to support corneal epithelial cells. A plastically compressed collagen (PCC) scaffold was photo cross-linked by UVA in the presence of riboflavin to form a biomaterial with optimal mechanical properties. The breaking force, rheology, surgical suture strength, transparency, ultrastructure, and cell-based biocompatibility were compared between PCPCC and PCC gels. The breaking force increased proportionally with an increased concentration of riboflavin. The stress required to reach breaking point of the PCPCC scaffolds was over two times higher compared to the stress necessary to break PCC scaffolds in the presence of 0.1% riboflavin. Rheology results indicated that the structural properties of PCC remain unaltered after UVA cross-linking. The PCC gels were more easily broken than PCPCC gels when sutured on to bovine corneas. The optical density values of PCPCC and PCC showed no significant differences (p > 0.05). SEM analyses showed that the collagen fibres within the PCPCC gels were similar in morphology to PCC gels. No difference in cell-based biocompatibility was seen between the PCPCC and PCC scaffolds in terms of their ability to support the ex vivo expansion of corneal epithelial cells or their subsequent differentiation evidenced by similar levels of cytokeratin 14. In conclusion, PCPCC scaffold is an optimal biomaterial for use in therapeutic tissue engineering of the cornea.