65 resultados para PERTURBED ANGULAR CORRELATION
em CentAUR: Central Archive University of Reading - UK
Resumo:
Visuospatial attentional bias was examined in Huntington's disease (HID) patients with mild disease, asymptomatic gene-positive patients and controls. No group differences were found on the grey scales task (which is a non-motor task of visuospatial attentional bias), although patients' trinucleotide (CAG) repeat length correlated with increasing leftward bias. On the line bisection task, symptomatic patients made significantly larger leftward bisection errors relative to controls, who showed the normal slight degree of leftward error (pseudo-neglect). The asymptomatic group showed a trend for greater leftward error than controls. A subset of participants went on to have structural MRI, which showed a correlation between increased leftward error on the line bisection task and reduced density in the angular gyrus area (BA39) bilaterally. This finding is consistent with recent literature suggesting a critical role for the angular gyrus in the lateralization of visuospatial attention.
Resumo:
It is shown here that the angular relation equations between direct and reciprocal vectors are very similar to the angular relation equations in Euler's theorem. These two sets of equations are usually treated separately as unrelated equations in different fields. In this careful study, the connection between the two sets of angular equations is revealed by considering the cosine rule for the spherical triangle. It is found that understanding of the correlation is hindered by the facts that the same variables are defined differently and different symbols are used to represent them in the two fields. Understanding the connection between different concepts is not only stimulating and beneficial, but also a fundamental tool in innovation and research, and has historical significance. The background of the work presented here contains elements of many scientific disciplines. This work illustrates the common ground of two theories usually considered separately and is therefore of benefit not only for its own sake but also to illustrate a general principle that a theory relevant to one discipline can often be used in another. The paper works with chemistry related concepts using mathematical methodologies unfamiliar to the usual audience of mainstream experimental and theoretical chemists.
Resumo:
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.
Resumo:
An analytical dispersion relation is derived for linear perturbations to a Rankine vortex governed by surface quasi-geostrophic dynamics. Such a Rankine vortex is a circular region of uniform anomalous surface temperature evolving under quasi-geostrophic dynamics with uniform interior potential vorticity. The dispersion relation is analysed in detail and compared to the more familiar dispersion relation for a perturbed Rankine vortex governed by the Euler equations. The results are successfully verified against numerical simulations of the full equations. The dispersion relation is relevant to problems including wave propagation on surface temperature fronts and the stability of vortices in quasi-geostrophic turbulence.
Resumo:
We present the results of a study of solar wind velocity and magnetic field correlation lengths over the last 35 years. The correlation length of the magnetic field magnitude λ | B| increases on average by a factor of two at solar maxima compared to solar minima. The correlation lengths of the components of the magnetic field λ_{B_{XYZ}} and of the velocity λ_{V_{YZ}} do not show this change and have similar values, indicating a continual turbulent correlation length of around 1.4×106 km. We conclude that a linear relation between λ | B|, VB 2, and Kp suggests that the former is related to the total magnetic energy in the solar wind and an estimate of the average size of geoeffective structures, which is, in turn, proportional to VB 2. By looking at the distribution of daily correlation lengths we show that the solar minimum values of λ | B| correspond to the turbulent outer scale. A tail of larger λ | B| values is present at solar maximum causing the increase in mean value.
Resumo:
The relationship between the magnetic field intensity and speed of solar wind events is examined using ∼3 years of data from the ACE spacecraft. No preselection of coronal mass ejections (CMEs) or magnetic clouds is carried out. The correlation between the field intensity and maximum speed is shown to increase significantly when |B| > 18 nT for 3 hours or more. Of the 24 events satisfying this criterion, 50% are magnetic clouds, the remaining half having no ordered field structure. A weaker correlation also exists between southward magnetic field and speed. Sixteen of the events are associated with halo CMEs leaving the Sun 2 to 4 days prior to the leading edge of the events arriving at ACE. Events selected by speed thresholds show no significant correlation, suggesting different relations between field intensity and speed for fast solar wind streams and ICMEs.
Resumo:
General expressions for the force constants and dipole‐moment derivatives of molecules are derived, and the problems arising in their practical application are reviewed. Great emphasis is placed on the use of the Hartree–Fock function as an approximate wavefunction, and a number of its properties are discussed and re‐emphasised. The main content of this paper is the development of a perturbed Hartree–Fock theory that makes possible the direct calculation of force constants and dipole‐moment derivatives from SCF–MO wavefunctions. Essentially the theory yields ∂ϕi / ∂RJα, the derivative of an MO with respect to a nuclear coordinate.
Resumo:
The perturbed Hartree–Fock theory developed in the preceding paper is applied to LiH, BH, and HF, using limited basis‐set SCF–MO wavefunctions derived by previous workers. The calculated values for the force constant ke and the dipole‐moment derivative μ(1) are (experimental values in parentheses): LiH, ke = 1.618(1.026)mdyn/Å,μ(1) = −18.77(−2.0±0.3)D/ÅBH,ke = 5.199(3.032)mdyn/Å,μ(1) = −1.03(−)D/Å;HF,ke = 12.90(9.651)mdyn/Å,μ(1) = −2.15(+1.50)D/Å. The values of the force on the proton were calculated exactly and according to the Hellmann–Feynman theorem in each case, and the discrepancies show that none of the wavefunctions used are close to the Hartree–Fock limit, so that the large errors in ke and μ(1) are not surprising. However no difficulties arose in the perturbed Hartree–Fock calculation, so that the application of the theory to more accurate wavefunctions appears quite feasible.