12 resultados para PEROXIDATION

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scope Epidemiological and clinical studies have demonstrated that the consumption of red haem-rich meat may contribute to the risk of colorectal cancer. Two hypotheses have been put forward to explain this causal relationship, i.e. N-nitroso compound (NOC) formation and lipid peroxidation (LPO). Methods and Results In this study, the NOC-derived DNA adduct O6-carboxymethylguanine (O6-CMG) and the LPO product malondialdehyde (MDA) were measured in individual in vitro gastrointestinal digestions of meat types varying in haem content (beef, pork, chicken). While MDA formation peaked during the in vitro small intestinal digestion, alkylation and concomitant DNA adduct formation was observed in seven (out of 15) individual colonic digestions using separate faecal inocula. From those, two haem-rich meat digestions demonstrated a significantly higher O6-CMG formation (p < 0.05). MDA concentrations proved to be positively correlated (p < 0.0004) with haem content of digested meat. The addition of myoglobin, a haem-containing protein, to the digestive simulation showed a dose–response association with O6-CMG (p = 0.004) and MDA (p = 0.008) formation. Conclusion The results suggest the haem-iron involvement for both the LPO and NOC pathway during meat digestion. Moreover, results unambiguously demonstrate that DNA adduct formation is very prone to inter-individual variation, suggesting a person-dependent susceptibility to colorectal cancer development following haem-rich meat consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of chlorogenic acid to inhibit oxidation of human low-density lipoprotein (LDL) was studied by in vitro copper-induced LDL oxidation. The effect of chlorogenic acid on the lag time before LDL oxidation increased in a dose dependent manner by up to 176% of the control value when added at concentrations of 0.25 -1.0 μM. Dose dependent increases in lag time of LDL oxidation were also observed, but at much higher concentrations, when chlorogenic acid was incubated with LDL (up to 29.7% increase in lag phase for 10 μM chlorogenic acid) or plasma (up to 16.6% increase in lag phase for 200 μM chlorogenic acid) prior to isolation of LDL, and this indicated that chlorogenic acid was able to bind, at least weakly, to LDL. Bovine serum albumin (BSA) increased the oxidative stability of LDL in the presence of chlorogenic acid. Fluorescence spectroscopy showed that chlorogenic acid binds to BSA with a binding constant of 3.88 x 104 M-1. BSA increased the antioxidant effect of chlorogenic acid, and this was attributed to copper ions binding to BSA, thereby reducing the amount of copper available for inducing lipid peroxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms that reduce the viability of plant somatic embryos following cryopreservation are not known. The objective of the present study was to evaluate the sensitivity of cocoa (Theobroma cacao L.) somatic embryos at different stages of an encapsulation-dehydration protocol using stress-related volatile hydrocarbons as markers of injury and recovery. The plant stress hormone ethylene and volatile hydrocarbons derived from hydroxyl radicals (methane) and lipid peroxidation (ethane) were determined using gas chromatography headspace analysis. Ethylene and methane were the only volatiles detected, with both being produced after each step of the cryogenic protocol. Ethylene production was significantly reduced following exposure to liquid nitrogen, but then increased in parallel with embryo recovery. In contrast, the production of methane was cyclic during recovery, with the first cycle occurring earlier for embryos recovered from liquid nitrogen and desiccation than those recovered from earlier steps in the protocol. These results suggest that loss of somatic embryo viability during cryopreservation may be related to the oxidative status of the tissue, and its capacity to produce ethylene. This study has demonstrated that headspace volatile analysis provides a robust non-destructive analytical approach for assessing the survival and recovery of plant somatic embryos following cryopreservation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated With Cu2+ ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu2+ to Cu+ and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu+ oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apolipoprotein A-IV (apoA-IV) inhibits lipid peroxidation, thus demonstrating potential anti-atherogenic properties. The aim of this study was to investigate how the inhibition of low density lipoprotein (LDL) oxidation was influenced by common apoA-IV isoforms. Recombinant wild type apoA-IV (100 mu g/ml) significantly inhibited the oxidation of LDL (50 mu g protein/ml) by 5 mu M CuSO4 (P < 0.005), but not by 100 mu M CuSO4, suggesting that it may act by binding copper ions. ApoA-IV also inhibited the oxidation of LDL by the water-soluble free-radical generator 2,2'-azobis(amidinopropane) dihydrochloride (AAPH; I mM), as shown by the two-fold increase in the time for half maximal conjugated diene formation (T-1/2; P < 0.05) suggesting it can also scavenge free radicals in the aqueous phase. Compared to wild type apoA-IV, apoA-IV-S347 decreased T-1/2 by 15% (P = 0.036) and apoA-IV-H360 increased T-1/2 by 18% (P = 0.046). All apoA-IV isoforms increased the relative electrophoretic mobility of native LDL, suggesting apoA-IV can bind to LDL and acts as a site-specific antioxidant. The reduced inhibition of LDL oxidation by apoA-IV-S347 compared to wild type apoA-IV may account for the previous association of the APOA4 S347 variant with increased CHD risk and oxidative stress. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD36 is an important scavenger receptor mediating uptake of oxidized low- density lipoproteins ( oxLDLs) and plays a key role in foam cell formation and the pathogenesis of atherosclerosis. We report the first evidence that the transcription factor Nrf2 is expressed in vascular smooth muscle cells, and demonstrate that oxLDLs cause nuclear accumulation of Nrf2 in murine macrophages, resulting in the activation of genes encoding CD36 and the stress proteins A170, heme oxygenase- 1 ( HO- 1), and peroxiredoxin I ( Prx I). 4- Hydroxy- 2- nonenal ( HNE), derived from lipid peroxidation, was one of the most effective activators of Nrf2. Using Nrf2- deficient macrophages, we established that Nrf2 partially regulates CD36 expression in response to oxLDLs, HNE, or the electrophilic agent diethylmaleate. In murine aortic smooth muscle cells, expressing negligible levels of CD36, both moderately and highly oxidized LDL caused only limited Nrf2 translocation and negligible increases in A170, HO- 1, and Prx I expression. However, treatment of smooth muscle cells with HNE significantly enhanced nuclear accumulation of Nrf2 and increased A170, HO- 1, and Prx I protein levels. Because PPAR-gamma can be activated by oxLDLs and controls expression of CD36 in macrophages, our results implicate Nrf2 as a second important transcription factor involved in the induction of the scavenger receptor CD36 and antioxidant stress genes in atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidized LDL is present within atherosclerotic lesions, demonstrating a failure of antioxidant protection. A normal human serum ultrafiltrate of M-r below 500 was prepared as a model for the low M-r components of interstitial fluid, and its effects on LDL oxidation were investigated. The ultrafiltrate (0.3%, v/v) was a potent antioxidant for native LDL, but was a strong prooxidant for mildly oxidized LDL when copper, but not a water-soluble azo initiator, was used to oxidize LDL. Adding a lipid hydroperoxide to native LDL induced the antioxidant to prooxidant switch of the ultrafiltrate. Uric acid was identified, using uricase and add-back experiments, as both the major antioxidant and prooxidant within the ultrafiltrate for LDL. The ultrafiltrate or uric acid rapidly reduced Cu2+ to Cu+. The reduction of Cu2+ to Cu+ may help to explain both the antioxidant and prooxidant effects observed. The decreased concentration of Cu2+ would inhibit tocopherol-mediated peroxidation in native LDL, and the generation of Cu+ would promote the rapid breakdown of lipid hydroperoxides in mildly oxidized LDL into lipid radicals. The net effect of the low M-r serum components would therefore depend on the preexisting levels of lipid hydroperoxides in LDL.jlr These findings may help to explain why LDL oxidation occurs in atherosclerotic lesions in the presence of compounds that are usually considered to be antioxidants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background & aims: This study investigated the influence of four commercial lipid emulsions, Ivelip, ClinOleic, Omegaven and SMOFlipid (R), on lipid body formation, fatty acid composition and eicosanoid production by cultured human peripheral blood polymorphonuclear cells (PMN) and mononuclear cells (PBMC). Methods: PMN and PBMC were exposed to emulsions at concentrations ranging from 0.01 to 0.04%. Lipid body formation was assessed by microscopy, fatty acid composition by gas chromatography and eicosanoids by ELISA. Results: Stimulation of inflammatory cells and exposure to lipid emulsions promoted the formation of lipid bodies, but there did not appear to be differential effects of the emulsions tested. In contrast, there were differential effects of lipid emulsions on eicosanoid formation, particularly with regards to LTB4 production by PMN. Omegaven dramatically increased production of eicosanoids compared with the other emulsions in a dose-dependent manner. This effect was associated with a significantly higher level of lipid peroxides in the supernatants of cells exposed to Omegaven. Conclusions: Stimulation of inflammatory cells and exposure to lipid emulsions promotes lipid body formation and eicosanoid production, although the differential effects of different emulsions appear to be largely due to lipid peroxidation of unsaturated fatty acids in some emulsions in this in vitro system. (C) 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aetiology of apoE4 genotype-Alzheimer's disease (AD) association are complex. The current study emphasizes the impact of apoE genotype and potential beneficial effects of vitamin E (VE) in relation to oxidative stress. Agonist induced neuronal cell death was examined 1) in the presence of conditioned media containing equal amounts of apoE3 or apoE4 obtained from stably transfected macrophages, and 2) after pretreatment with alpha- and gamma-tocopherol, and -tocotrienol. ApoE3 and apoE4 transgenic mice were fed a diet poor or rich in VE to study the interplay of both apoE genotype and VE status, on membrane lipid peroxidation, antioxidative enzyme activity and glutathione levels in the brain. Cytotoxicity of hydrogen peroxide and glutamate was higher in neuronal cells cultured with apoE4 than apoE3 conditioned media. VE pre-treatment of neurons counteracted the cytotoxicity of a peroxide challenge but not of nitric oxide. No significant effects of apoE genotype or VE supplementation were observed on lipid peroxidation or antioxidative status in the brain of apoE3 and apoE4 mice. VE protects against oxidative insults in vitro, however, no differences in brain oxidative status were observed in mice. Unlike in cultured cells, apoE4 may not contribute to higher neuronal oxidative stress in the brain of young targeted replacement mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apolipoprotein E (apoE), an important determinant of plasma lipoprotein metabolism, has three common alleles (ε 2, ε 3, and ε 4). Population studies have shown that the risk of diseases characterized by oxidative damage, such as coronary heart disease and Alzheimer's disease, is significantly higher in ε 4 carriers. We evaluated the association between apoE genotypes and plasma F-2-isoprostane levels, an index of lipid peroxidation, in humans. Two hundred seventy-four healthy subjects (104 males, 170 females; 46.9 &PLUSMN; 13.0 yr; 200 whites, 74 blacks; 81 nonsmokers, 64 passive smokers, and 129 active smokers) recruited for a randomized clinical antioxidant intervention trial were included in this analysis. ApoE genotype was determined by PCR and restriction enzyme digestion. Free plasma F2-isoprostane was measured by GC-MS. Genotype groups were compared using multiple regression analysis with adjustment for sex, age, race, smoking status, body mass index, plasma ascorbic acid, and β-carotene. Subjects with ε 3/ε 4 and ε 4/ε 4 genotype (ε 4-carriers) and with ε 2/ε 3 and ε 3/ε 3 (non-ε 4-carriers) were pooled for analysis. In subjects with high cholesterol levels (total cholesterol above 200 mg/dl), plasma F-2-isoprostane levels were 29% higher in ε 4 carriers than in non-ε 4-carriers (P= 0.0056). High-cholesterol subjects that are ε 4 carriers have significantly higher levels of lipid peroxidation as assessed by circulating F-2-isoprostane levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red and processed meat consumption is associated with the risk of colorectal cancer. Three hypotheses are proposed to explain this association, via heme-induced oxidation of fat, heterocyclic amines, or N-nitroso compounds. Rats have often been used to study these hypotheses, but the lack of enterosalivary cycle of nitrate in rats casts doubt on the relevance of this animal model to predict nitroso- and heme-associated human colon carcinogenesis. The present study was thus designed to clarify whether a nitrite intake that mimics the enterosalivary cycle can modulate hemeinduced nitrosation and fat peroxidation. This study shows that, in contrast with the starting hypothesis, drinking water added with nitrite to mimic the salivary nitrite content did not change the effect of hemoglobin on biochemicalmarkers linked to colon carcinogenesis, notably lipid peroxidation and cytotoxic activity in the colon of rat. However, ingested sodium nitrite increased fecal nitrosocompounds level, but their fecal concentration and their nature (iron-nitrosyl) would probably not be associated with an increased risk of cancer.We thus suggest that the rat model could be relevant for study the effect of red meat on colon carcinogenesis, in spite of the lack of nitrite in the saliva of rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiology shows that red and processed meat intake is associated with an increased risk of colorectal cancer. Heme iron, heterocyclic amines and endogenous N-nitroso compounds (NOC) are proposed to explain this effect, but their relative contribution is unknown. Our study aimed at determining, at nutritional doses, which is the main factor involved and proposing a mechanism of cancer promotion by red meat. The relative part of heme iron (1% in diet), heterocyclic amines (PhIP+MeIQx, 50+25 μg/kg in diet) and NOC (induced by NaNO2+NaNO3 0.17+0.23 g/l of drinking water) was determined by a factorial design and preneoplastic endpoints in chemically-induced rats and validated on tumors in Min mice. The molecular mechanisms (genotoxicity, cytotoxicity) were analyzed in vitro in normal and Apc- deficient cell lines and confirmed on colon mucosa. Heme iron increased the number of preneoplastic lesions but dietary heterocyclic amines and NOC had no effect on carcinogenesis in rats. Dietary hemoglobin increased tumor load in Min mice (control diet: 67±39 mm2; 2,5% hemoglobin diet: 114±47 mm2, p=0.004). In vitro, fecal water from rats given hemoglobin was rich in aldehydes and was cytotoxic to normal cells, but not to premalignant cells. The aldehydes 4-hydroxynonenal and 4-hydroxyhexenal were more toxic to normal versus mutated cells and were only genotoxic to normal cells. Genotoxicity was also observed in colon mucosa of mice given hemoglobin. These results highlight the role of heme iron in the promotion of colon cancer by red meat and suggest that heme iron could initiate carcinogenesis through lipid peroxidation.