118 resultados para PD(II) COMPLEXES

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray crystal structure shows that 3,5-dimethyl-1-(2-nitrophenyl)-1H-pyrazole (DNP) belongs to the rare class of helically twisted synthetic organic molecules. Hydrogenation of DNP gives 2-(3,5-dimethylpyrazole-1-yl)phenylamine (L) which on methylation yields [2-(3,5-dimethylpyrazole-1-yl)phenyl]dimethylamine (L'). Two Pd(II) complexes, PdLCl2 (1) and PdL'Cl-2 (2), are synthesized and characterized by NMR. X-ray crystallography reveals that 1 and 2 are unprecedented square planar complexes which possess well discernible helical twists. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)(2)-3,5}-2,2':6',2 ''-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)(2), and [Ru(TPBr)(2)](PF6)(2), synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)(2) (7) and [Ru(TPPdCl)(2)]-(PF6)(2) (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)(2)](PF6)(2) (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono-and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (MLCT)-M-1 (Ru -> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)(2)](2+) indicates stabilization of the luminescent (MLCT)-M-3 state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)(2), are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)(2)} chromophoric unit and the (non)metalated NCN-pincer moiety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = −S(CH2)4S−, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The previously synthesised Schiff-base ligands 2-(2-Ph2PC6H4N = CH) - R' - C6H3OH (R' = 3-OCH3, HL1; 5-OCH3, HL2; 5-Br, HL3; 5-Cl, HL4) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino) aniline with the appropriate substituted salicylaldehyde. HL1-4 react directly with (MCl2)-Cl-II (M = Pd, Pt) or (PtI2)-I-II(cod) affording neutral square-planar complexes of general formula [(MCl)-Cl-II(eta(3)-L1-4)] (M = Pd, Pt, 1 - 8) and [(PtI)-I-II(eta(3)-L1-4)] (M = Pd, Pt, 9 - 12). Reaction of complexes 1 - 4 with the triarylphosphines PR3 (R = Ph, p-tolyl) gave the novel ionic complexes [Pd-II(PR3)(eta(3)- L1-4)] ClO4 (13 - 20). Substituted platinum complexes of the type [Pt-II(PR3)(eta(3)- L1-4)] ClO4 (R = P(CH2CH2CN)(3) 21 - 24) and [Pt-II( P(p-tolyl)(3))(eta(3)-L-3,L-4)] ClO4 ( 25 and 26) were synthesised from the appropriate [(PtCl)-Cl-II(eta(3)-L1-4)] complex (5 - 8) and PR3. The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O, N, P donor set together with one further atom which is trans to the central nitrogen atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new polynuclear copper(II) complexes of singly deprotonated L-glutamic acid (L-glu), {[Cu(bipy)(2)][Cu(bipy)(L-glu)H2O](2)(BF4)(4)center dot(H2O)(3)}(n) (1), {[Cu(bipy)(L-glu)H2O][Cu(bipy)(L-glu)(ClO4)]( ClO4)center dot(H2O)(2)}(n) ((2)) and [Cu(phen)(L-glu)H2O](2)(NO3)(2)center dot(H2O)(4) (3) (bipy = 2,2-bipyridine, phen = 1,10-phenanthroline), were synthesized in acidic pH (ca. 2.5) and characterized structurally. In all the complexes, L-glutamic acid acts as a bidentate chelating ligand, leaving the protonated carboxylic acid free. Both in 1 and 2, two different types of species [Cu(bipy)(2)](BF4)(2) and [Cu(bipy)(L-glu)H2O] BF4 for 1 and [Cu(bipy)(L-glu)H2O]ClO4 and [Cu(bipy)(L-glu)(ClO4)] for 2 coexist in the solid state. In complex 1, the [C( bipy)(L-glu)H2O]+ units are joined together by syn-anti carboxylate bridges to form an enantiopure (M) helical chain and the [Cu(bipy)(2)](2+) presents a very rare example of the four-coordinate distorted tetrahedral geometry of Cu(II). In complex 2, the [Cu(bipy)(L gluClO(4))] units are joined together by weakly coordinating perchlorate ions to form a 1D polymeric chain while the [Cu(bipy)(L-glu)H2O]+ units remain as mononuclear species. The different coordinating ability of the two counter anions along with their involvement in the H-bonding network seems likely to be responsible for the difference in the final polymeric structures in the two compounds. Variable-temperature (2-300 K) magnetic susceptibility measurements show negligible coupling for both the complexes. The structure of 3 consists of two independent monomeric [Cu(phen)(L-glu)H2O]+ cations, two nitrate anions and four water molecules. The copper atom occupies a five-coordinate square pyramidal environment with a water molecule in the axial position.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new polynuclear copper(II) complexes of 2-picolinic acid (Hpic), {[Cu-2(pic)(3)(H2O)]ClO4}(n) (1), {[Cu-2(pic)(3)(H2O)]BF4}(n) (2), and [Cu-2(pic)3(H2O)(2)(NO3)](n) (3), have been synthesized by reaction of the "metalloligand" [Cu-(pic)(2)] with the corresponding copper(II) salts. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Compounds 1 and 2 are isomorphous and crystallize in the triclinic system with space group P (1) over bar, while 3 crystallizes in the monoclinic system with space group P2(1)/n. The structural analyses reveal that complexes 1 and 2 are constructed by "fish backbone" chains through syn-anti (equatorial-equatorial) carboxylate bridges, which are linked to one another by syn-anti (equatorial-axial) carboxylate bridges, giving rise to a rectangular grid-like two-dimensional net. Complex 3 is formed by alternating chains of syn-anti carboxylate-bridged copper(II) atoms, which are linked together by strong H bonds involving coordinated nitrate ions and water molecules and uncoordinated oxygen atoms from carboxylate groups. The different coordination ability of the anions along with their involvement in the H-bonding network seems to be responsible for the difference in the final polymeric structures. Variable-temperature (2-300 K) magnetic susceptibility measurement shows the presence of weak ferromagnetic coupling for all three complexes that have been fitted with a fish backbone model developed for 1 and 2 (J = 1.74 and 0.99 cm(-1); J' = 0.19 and 0.25 cm(-1), respectively) and an alternating chain model for 3 (J = 1.19 cm(-1) and J' = 1.19 cm(-1)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new dioxatetraazamacrocycle (L-1) was synthesized by a 2 + 2 condensation and characterized. Stability constants of its copper(II) complexes were determined by spectrophotometry in DMSO at 298.2 K in 0. 10 mol dm(-3) KClO4. Mainly dinuclear complexes are formed and the presence of mononuclear species is dependent on the counterion (Cl- or ClO4-). The association constants of the dinuclear copper(II) complexes with dicarboxylate anions [oxalate (oxa(2-)), malonate (mal(2-)), succinate (suc(2-)), and glutarate (glu(2-))] were also determined by spectrophotometry at 298.2 K in DMSO, and it was found that values decrease with an increase of the alkyl chain between the carboxylate groups. X-Band EPR spectra of the dicopper(II) complexes and of their cascade species in frozen DMSO exhibit dipole-dipole coupling, and their simulation, together with their UV-vis spectra, showed that the copper centres of the complexes in solution had square pyramidal geometries though with different distortions. From the experimental data, it was also possible to predict the Cu...Cu distances, the minimum being found at 6.4 angstrom for the (Cu2LCl4)-Cl-1 complex and then successively this distance slightly increases when the chloride anions are replaced by dicarboxylate anions, from 6.6 angstrom for oxa(2-) to 7.8 for glu(2-). The crystal structures of the dinuclear copper cascade species with oxa(2-) and suc(2-) were determined and showed one anion bridging both copper centres and Cu...Cu distances of 5.485(7) angstrom and 6.442(8) angstrom, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sets of ligands, set-1 and set-2, have been prepared by mixing 1,3-diaminopentane and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively, and employed for the synthesis of complexes with Ni(II) perchlorate, Ni(II) thiocyanate and Ni(II) chloride. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2)(L = L-1 [N-3-(1-pyridin-2-yl-ethylidene)-pentane-1,3-diamine] for complex 1 or L-2[N-3-pyridin-2-ylmethylene-pentane-1,3-diamine] for complex 2) in which the Schiff bases are monocondensed terdentate, whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL(SCN)(2)] (L = L-3[N,N'-bis-(1-pyridin-2- yl-ethylidine)-pentane-1,3-diamine] for complex 3 or L-4 [N,N'-bis(pyridin-2-ylmethyline)-pentane-1,3- diamine] for complex 4) irrespective of the sets of ligands used. Complexes 5 {[NiL3(N-3)(2)]} and 6 {[NiL4(N-3)(2)]} are prepared by adding sodium azide to the methanol solution of complexes 1 and 2. Addition of Ni(II) chloride to the set-1 or set-2 ligands produces [Ni(pn)(2)]Cl-2, 7, as the major product, where pn = 1,3-diaminopentane. Formation of the complexes has been explained by the activation of the imine bond by the counter anion and thereby favouring the hydrolysis of the Schiff base. All the complexes have been characterized by elemental analyses and spectral data. Single crystal X-ray diffraction studies con. firm the structures of three representative members, 1, 4 and 7; all of them have distorted octahedral geometry around Ni(II). The bis-complex of terdentate ligands, 1, is the mer isomer, and complexes 4 and 7 possess trans geometry. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new mononuclear Cu(II) complex, [CuL(ClO4)(2)] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N'-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography. The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions. Reactions of I with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N-3)]ClO4 (2), [CuL(SCN)ClO4 (3) or [CuL(NO2)]-ClO4 (4), respectively, all of which have been characterized by X-ray analysis. The geometries of the penta-coordinated copper(H) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (tau) 0.47, 0.45 and 0.58, respectively. In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the 0 atoms of the nitrite occupy one axial site. Complex 1 shows distinct preference for the anion in the order SCN- > N-3(-) > NO2- in forming the complexes 24 when treated with a SCN-/N-3(-)/NO2- mixture. Electrochemical electron transfer study reveals (CuCuI)-Cu-II reduction in acetonitrile solution. (c) 2006 Elsevier B.V.. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new copper(II) complexes, [((CuLN3)-N-1)(2)](ClO4)(2) (1), [(CuL2 N-3)(2)](ClO4)(2) (2), [CuL3(N-3)ClO4)](n) (3) and [CuL4(mu-1,1-N-3)(mu-1,3-N-3)(ClO4)](n) (4) where L-1 = N-1-pyridin-2-yl-methylene-propane-1,3-diamine, L-2 = N-1-(1-pyridin-2-yl-ethylidene)propane-1,3-diamine, L-3 =N-1-(1-pyridin-2-yl-ethylidene)ethane-1,2-diamine and L-4=N-1-(1-pyridin-2-yl-ethylidene)propane-1,2-diamine are four tridentate N,N,N donor Schiff base ligands, have been derived and structurally characterized by X-ray crystallography. Compounds 1 and 2 consist of double basal-apical end-on (EO) azide bridged dinuclear Cu-II complexes with square-pyramidal geometry. In complex 3 the square planar mononuclear [CuL3 (N-3)] units are linked by weakly coordinated perchlorate ions in the axial positions of Cu-II to form a one-dimensional chain. Two such chains are connected by hydrogen bonds involving perchlorate ions and azide groups. Compound 4 consists of 1-D chains in which the Cu-II ions with a square-pyramidal geometry are alternately bridged by single EO and end-to-end (EE) azido ligands, both adopting a basal-apical disposition. Variable temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K have been performed. The results reveal that complexes 1 and 2 are antiferromagnetically coupled through azido bridges (J= -12.18 +/- 0.09 and -4.43 +/- 0.1 cm(-1) for 1 and 2, respectively). Complex 3 shows two different magnetic interactions through the two kinds of hydrogen bonds; one is antiferromagnetic (J(1) = - 9.69 +/- 0.03 cm(-1)) and the other is ferromagnetic (J(2) = 1.00 +/- 0.01 cm(-1)). From a magnetic point of view complex 4 is a ferromagnetic dinuclear complex (J= 1.91 +/- 0.01 cm(-1)) coupled through the EO bridge only. The coupling through the EE bridge is practically nil as the N(azido)-Cu-II (axial) distance (2.643 angstrom) is too long. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sets of nickel(11) complexes of a series of tetradentate NSNO ligands were synthesized and isolated in their pure form. All these complexes, formulated as [Ni(L)Cl](2) and [Ni(L)(N-3)](2) [HL = pyridylthioazophenols], were characterized using physicochemical and spectroscopic tools. The solid-state structures of two complexes (1a and 2a) were established by X-ray crystallography. The geometry about the nickel ion of the complexes is octahedral and the complexes are dimeric in nature. In 1, two Ni(II) ions are bridged by two Cl- anions while in 2 they are bridged by two azide ions in a mu-1,1-bridging fashion. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactions of the 1: 2 condensate (L) of benzil dihydrazone and 2-acetylpyridine with Hg(ClO4)(2) center dot xH(2)O and HgI2 yield yellow [HgL2](ClO4)(2) (1) and HgLI2 (2), respectively. Homoleptic 1 is a 8-coordinate double helical complex with a Hg(II)N-8 core crystallising in the space group Pbca with cell dimensions: a = 16.2250(3), b = 20.9563(7), c = 31.9886(11) angstrom. Complex 2 is a 4-coordinate single helical complex having a Hg(II)N2I2 core crystallising in the space group P2(1)/n with cell dimensions a = 9.8011(3), b = 17.6736(6), c = 16.7123(6) angstrom and b = 95.760(3). In complex 1, the N-donor ligand L uses all of its binding sites to act as tetradentate. On the other hand, it acts as a bidentate N-donor ligand in 2 giving rise to a dangling part. From variable temperature H-1 NMR studies both the complexes are found to be stereochemically non-rigid in solution. In the case of 2, the solution process involves wrapping up of the dangling part of L around the metal. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two copper(II) complexes of the type CuL2.imidazole (1) and Cu2L4(4.4'-bpy).2H(2)O.C6H14 (2), where LH = 1-nitroso-2-naphthol and 4.4'-bpy = 4,4'-bipyridine, are characterised by X-ray crystallography. In 2, the two copper atoms are linked by 4,4'-bpy. In both the complexes, copper is found to have a distorted square pyramidal N3O2 coordination sphere. The axial position in I is occupied by an oxygen atom while those in 2 by the nitrogen atoms of 4.4'-bpy. The two complexes display quasireversible Cu(III/II) couples around 0.68 V vs. saturated calomel electrode in cyclic voltammetry in dichloromethane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One 3D and one 2D mu(1,5)-dicyanamide bridged Ni-II complexes having molecular formula [Ni(L1)(dca)(2)] (1) and [Ni-2(L-2)(2)(dca)(4)] (.) 0.5H(2)O (2) (L1 = 4-(2-aminoethyl)-morpholine, L2 = 1-(2-aminoethyl)-piperidine and dca = dicyanamide dianion) have been synthesized. X-ray single crystal analyses and low temperature magnetic measurements were used to characterize the complexes. Complex 1 represents a 3D structure where each metal ion is chelated by morpholine ligand (L1) and connected by four mu(1,5)-dca. Whereas complex 2 shows an undulated 2D structure with grid of (4,4) topology having two crystallographically independent Ni-II centers in similar octahedral environment where each metal center is chelated by one piperidine ligand (L2) and coordinated by four mu(1,5)-dca. Magnetic measurements of both the complexes indicate weak antiferromagnetic interactions through the mu-(1,5)-dca bridging ligands. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new metal-organic polymeric complexes, [Fe(N-3)(2)(bPP)(2)] (1), [Fe(N-3)(2)(bpe)] (2), and [Fe(N-3)(2)(phen)] (3) [bpp = (1,3-bis(4-pyridyl)-propane), bpe = (1,2-bis(4-pyridyl)-ethane), phen = 1,10-phenanthroline], have been synthesized and characterized by single-crystal X-ray diffraction studies and low-temperature magnetic measurements in the range 300-2 K. Complexes 1 and 2 crystallize in the monoclinic system, space group C2/c, with the following cell parameters: a = 19.355(4) Angstrom, b = 7.076(2) Angstrom, c = 22.549(4) Angstrom, beta = 119.50(3)degrees, Z = 4, and a = 10.007(14) Angstrom, b = 13.789(18) Angstrom, c = 10.377(14) Angstrom, beta = 103.50(1)degrees, Z = 4, respectively. Complex 3 crystallizes in the triclinic system, space group P (1) over bar, with a = 7.155(12) Angstrom, b = 10.066(14) Angstrom, c = 10.508(14) Angstrom, alpha = 109.57(1)degrees, beta = 104.57(1)degrees, gamma = 105.10(1)degrees, and Z = 2. All coordination polymers exhibit octahedral Fe(II) nodes. The structural determination of 1 reveals a parallel interpenetrated structure of 2D layers of (4,4) topology, formed by Fe(II) nodes linked through bpp ligands, while mono-coordinated azide anions are pendant from the corrugated sheet. Complex 2 has a 2D arrangement constructed through 1D double end-to-end azide bridged iron(11) chains interconnected through bpe ligands. Complex 3 shows a polymeric arrangement where the metal ions are interlinked through pairs of end-on and end-to-end azide ligands exhibiting a zigzag arrangement of metals (Fe-Fe-Fe angle of 111.18degrees) and an intermetallic separation of 3.347 Angstrom (through the EO azide) and of 5.229 Angstrom (EE azide). Variable-temperature magnetic susceptibility data suggest that there is no magnetic interaction between the metal centers in 1, whereas in 2 there is an antiferromagnetic interaction through the end-to-end azide bridge. Complex 3 shows ferro- as well as anti-ferromagnetic interactions between the metal centers generated through the alternating end-on and end-to-end azide bridges. Complex I has been modeled using the D parameter (considering distorted octahedral Fe(II) geometry and with any possible J value equal to zero) and complex 2 has been modeled as a one-dimensional system with classical and/or quantum spin where we have used two possible full diagonalization processes: without and with the D parameter, considering the important distortions of the Fe(II) ions. For complex 3, the alternating coupling model impedes a mathematical solution for the modeling as classical spins. With quantum spin, the modeling has been made as in 2.