111 resultados para PARTICLE DISCRIMINATION
em CentAUR: Central Archive University of Reading - UK
Resumo:
Airborne dust affects the Earth's energy balance — an impact that is measured in terms of the implied change in net radiation (or radiative forcing, in W m-2) at the top of the atmosphere. There remains considerable uncertainty in the magnitude and sign of direct forcing by airborne dust under current climate. Much of this uncertainty stems from simplified assumptions about mineral dust-particle size, composition and shape, which are applied in remote sensing retrievals of dust characteristics and dust-cycle models. Improved estimates of direct radiative forcing by dust will require improved characterization of the spatial variability in particle characteristics to provide reliable information dust optical properties. This includes constraints on: (1) particle-size distribution, including discrimination of particle subpopulations and quantification of the amount of dust in the sub-10 µm to <0.1 µm mass fraction; (2) particle composition, specifically the abundance of iron oxides, and whether particles consist of single or multi-mineral grains; (3) particle shape, including degree of sphericity and surface roughness, as a function of size and mineralogy; and (4) the degree to which dust particles are aggregated together. The use of techniques that measure the size, composition and shape of individual particles will provide a better basis for optical modelling.
Resumo:
Vertically pointing Doppler radar has been used to study the evolution of ice particles as they sediment through a cirrus cloud. The measured Doppler fall speeds, together with radar-derived estimates for the altitude of cloud top, are used to estimate a characteristic fall time tc for the `average' ice particle. The change in radar reflectivity Z is studied as a function of tc, and is found to increase exponentially with fall time. We use the idea of dynamically scaling particle size distributions to show that this behaviour implies exponential growth of the average particle size, and argue that this exponential growth is a signature of ice crystal aggregation.
Resumo:
SMPS and DMS500 analysers were used to measure particulate size distributions in the exhaust of a fully annular aero gas turbine engine at two operating conditions to compare and analyse sources of discrepancy. A number of different dilution ratio values were utilised for the comparative analysis, and a Dekati hot diluter operating at a temperature of 623°K was also utilised to remove volatile PM prior to measurements being made. Additional work focused on observing the effect of varying the sample line temperatures to ascertain the impact. Explanations are offered for most of the trends observed, although a new, repeatable event identified in the range from 417°K to 423°K – where there was a three order of magnitude increase in the nucleation mode of the sample – requires further study.
Resumo:
The particle size distributions of surface soils from two cultivated silty fields (Moorfield and Railway South) in Herefordshire, UK, were assessed by sampling on 20-m grids across the fields. Moorfield (8 ha) had a uniform landscape sloping mainly in a North-South direction while Railway South (12 ha) had complex undulating landscape characteristics. Samples from 3 surficial layers were also taken at 3 landscape positions at Moorfield to investigate recent (within-season) soil particle redistribution. Size fractions were determined using chemical dispersion, wet sieving (to separate the sand fractions) and laser gramilometry (for the finer fractions). The distribution of various fractions and the relationships between elevation and the various fractions suggest preferential detachment and movement of coarse to very coarse silt fractions (16-63 mu m), which were found mostly at downslope or depositional areas. Upper slope samples had higher clay to fine silt (< 16 mu m) contents than bottom slope samples. The upslope-downslope patterns of size fractions, particularly on uniformly sloping areas, of the 2 fields were similar and their deposited sediments were dominated by coarse silt fractions. Samples from 3 landscape positions at Moorfield became coarser from the less eroded summit, through the eroding side-slope to the bottom-slope depositional area. Within each of these landscape positions the top 0-2.5 cm layers were more enriched in coarse silt fractions than the bottom layers. The spatial patterns of soil particle size distributions in the 2 fields may be a result of sediment detachment and deposition caused by water erosion and tillage operations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling trace element distribution in soils around ancient and modem mining and smelting areas are not always clear. Tharsis, Riotinto and Huelva are located in the Iberian Pyrite Belt in SW Spain. Tharsis and Riotinto mines have been exploited since 2500 B.C., with intensive smelting taking place. Huelva, established in 1970 and using the Flash Furnace Outokumpu process, is currently one of the largest smelter in the world. Pyrite and chalcopyrite ore have been intensively smelted for Cu. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters, being found up to a maximum of 2 kin from the mines and smelters at Tharsis, Riotinto and Huelva. Trace element partitioning (over 2/3 of trace elements found in the residual immobile fraction of soils at Tharsis) and soil particles examination by SEM-EDX showed that trace elements were not adsorbed onto soil particles, but were included within the matrix of large trace element-rich Fe silicate slag particles (i.e. 1 min circle divide at least 1 wt.% As, Cu and Zn, and 2 wt.% Pb). Slag particle large size (I mm 0) was found to control the geographically restricted trace element distribution in soils at Tharsis, Riotinto and Huelva, since large heavy particles could not have been transported long distances. Distribution and partitioning indicated that impacts to the environment as a result of mining and smelting should remain minimal in the region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Heritage tourism depends on a physical resource based primarily on listed buildings and scheduled monuments. Visiting or staying in a historic building provides a rich tourism experience, but historic environments date from eras when access for disabled people was not a consideration. Current UK Government policy now promotes social inclusion via an array of equal opportunities, widening participation and anti-discrimination policies. Historic environments enjoy considerable legislative protection from adverse change, but now need to balance conservation with public access for all. This paper discusses the basis of research being undertaken by The College of Estate Management funded by the Mercers Company of London and the Harold Samuel Trust. It assesses how the 1995 Disability Discrimination Act has changed the legal obligations of owners/operators in managing access to listed buildings in tourism use. It also examines the key stakeholders and power structures in the management of historic buildings and distinguishes other important players in the management process.
Resumo:
Particle size distribution (psd) is one of the most important features of the soil because it affects many of its other properties, and it determines how soil should be managed. To understand the properties of chalk soil, psd analyses should be based on the original material (including carbonates), and not just the acid-resistant fraction. Laser-based methods rather than traditional sedimentation methods are being used increasingly to determine particle size to reduce the cost of analysis. We give an overview of both approaches and the problems associated with them for analyzing the psd of chalk soil. In particular, we show that it is not appropriate to use the widely adopted 8 pm boundary between the clay and silt size fractions for samples determined by laser to estimate proportions of these size fractions that are equivalent to those based on sedimentation. We present data from field and national-scale surveys of soil derived from chalk in England. Results from both types of survey showed that laser methods tend to over-estimate the clay-size fraction compared to sedimentation for the 8 mu m clay/silt boundary, and we suggest reasons for this. For soil derived from chalk, either the sedimentation methods need to be modified or it would be more appropriate to use a 4 pm threshold as an interim solution for laser methods. Correlations between the proportions of sand- and clay-sized fractions, and other properties such as organic matter and volumetric water content, were the opposite of what one would expect for soil dominated by silicate minerals. For water content, this appeared to be due to the predominance of porous, chalk fragments in the sand-sized fraction rather than quartz grains, and the abundance of fine (<2 mu m) calcite crystals rather than phyllosilicates in the clay-sized fraction. This was confirmed by scanning electron microscope (SEM) analyses. "Of all the rocks with which 1 am acquainted, there is none whose formation seems to tax the ingenuity of theorists so severely, as the chalk, in whatever respect we may think fit to consider it". Thomas Allan, FRS Edinburgh 1823, Transactions of the Royal Society of Edinburgh. (C) 2009 Natural Environment Research Council (NERC) Published by Elsevier B.V. All rights reserved.