7 resultados para PARASITE BURDEN
em CentAUR: Central Archive University of Reading - UK
Resumo:
The whipworm, Trichuris trichiura L., is one of the most common human intestinal parasites worldwide, yet little is known of its origin and global spread. Archaeological records for this nematode have all been of Neolithic or later date, suggesting a possible association between the spread of pastoral farming and human acquisition of whipworm. This paper reports the discovery of eggs of the genus Trichuris in late Mesolithic deposits from south Wales, indicating that whipworm was present in Europe before the arrival of agriculture. This raises the possibility that human infection by Trichuris arose through contact with wild animals in parts of the landscape frequented by both human and animal groups.
Resumo:
A large ensemble of general circulation model (GCM) integrations coupled to a fully interactive sulfur cycle scheme were run on the climateprediction.net platform to investigate the uncertainty in the climate response to sulfate aerosol and carbon dioxide (CO2) forcing. The sulfate burden within the model (and the atmosphere) depends on the balance between formation processes and deposition (wet and dry). The wet removal processes for sulfate aerosol are much faster than dry removal and so any changes in atmospheric circulation, cloud cover, and precipitation will feed back on the sulfate burden. When CO2 is doubled in the Hadley Centre Slab Ocean Model (HadSM3), global mean precipitation increased by 5%; however, the global mean sulfate burden increased by 10%. Despite the global mean increase in precipitation, there were large areas of the model showing decreases in precipitation (and cloud cover) in the Northern Hemisphere during June–August, which reduced wet deposition and allowed the sulfate burden to increase. Further experiments were also undertaken with and without doubling CO2 while including a future anthropogenic sulfur emissions scenario. Doubling CO2 further enhanced the increases in sulfate burden associated with increased anthropogenic sulfur emissions as observed in the doubled CO2-only experiment. The implications are that the climate response to doubling CO2 can influence the amount of sulfate within the atmosphere and, despite increases in global mean precipitation, may act to increase it.
Resumo:
This paper will document the early scientific observations that kindled my neuroendocrinological interest in pre-eclampsia, a life-threatening disease that affects both mother and baby. My interest in this subject started with the placental origin of melanotrophin activity, moving on, through corticotrophin-releasing factor and its binding protein, to a tachykinin modified specifically in the placenta by phosphocholine, a post-translational moiety normally used by parasites to avoid immune surveillance and rejection. This work may finally have led to an understanding of the identity of the elusive placental factor that, whilst attempting to compensate for the poor implantation of the placenta, causes the many symptoms seen in the mother during pre-eclampsia.
Resumo:
Development of a new species of malacosporean myxozoan (Buddenbrockia allmani n. sp.) in the bryozoan Lophopus crystallinus is described. Early stages, represented by isolated cells or small groups, were observed in the host's body wall or body cavity. Multiplication and rearrangement of cells gave an outer cell layer around a central mass. The outer cells made contact by filopodia and established adherens junctions. Sporoplasmosomes were a notable feature of early stages, but these were lost in subsequent development. Typical malacosporean sacs were formed from these groups by attachment of the inner (luminal) cells by a basal lamina to the outer layer (mural cells). Division of luminal cells gave rise to a population of cells that was liberated into the lumen of the sac. Mitotic spindles in open mitosis and prophase stages of meiosis were observed in luminal cells. Centrioles were absent. Detached luminal cells assembled to form spores with four polar capsules and several valve cells surrounding two sporoplasms with secondary cells. Restoration of sporoplasmosomes occurred in primary sporoplasms. A second type of sac was observed with highly irregular mural cells and stellate luminal cells. A radially striated layer and dense granules in the polar capsule wall, and previous data on 18 rDNA sequences enabled assignment of the species to the genus Buddenbrockia, while specific diagnosis relied on the rDNA data and on sac shape and size.
Resumo:
Many compounds in the environment have been shown capable of binding to cellular oestrogen receptors and then mimicking the actions of physiological oestrogens. The widespread origin and diversity in chemical structure of these environmental oestrogens is extensive but to date such compounds have been organic and in particular phenolic or carbon ring structures of varying structural complexity. Recent reports of the ability of certain metal ions to also bind to oestrogen receptors and to give rise to oestrogen agonist responses in vitro and in vivo has resulted in the realisation that environmental oestrogens can also be inorganic and such xenoestrogens have been termed metalloestrogens. This report highlights studies which show metalloestrogens to include aluminium, antimony, arsenite, barium, cadmium, chromium (Cr(II)), cobalt, copper, lead, mercury, nickel, selenite, tin and vanadate. The potential for these metal ions to add to the burden of aberrant oestrogen signalling within the human breast is discussed. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
An analysis was undertaken of clinic-based questionnaires that asked people with Parkinson's disease and a control group of older people without a known neurological condition about their experiences of constipation. People with Parkinson's disease report higher constipation on a validated objective measure, the Rome criterion (59% vs. 20.9%); a behavioral indicator, laxative-taking (38.4% vs. 14.2%); and subjective self-report of being always or often concerned by it (33.4% vs. 6.1%). Many people with Parkinson's disease experience constipation problems but they may not bring these to the attention of their healthcare providers. More research is required to understand the causes and management options. (C) 2006 Movement Disorder Society.
Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents
Resumo:
Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.