5 resultados para PAR-1

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although principally produced by the pancreas to degrade dietary proteins in the intestine, trypsins are also expressed in the nervous system and in epithelial tissues, where they have diverse actions that could be mediated by protease-activated receptors (PARs). We examined the biological actions of human trypsin IV (or mesotrypsin) and rat p23, inhibitor-resistant forms of trypsin. The zymogens trypsinogen IV and pro-p23 were expressed in Escherichia coli and purified to apparent homogeneity. Enteropeptidase cleaved both zymogens, liberating active trypsin IV and p23, which were resistant to soybean trypsin inhibitor and aprotinin. Trypsin IV cleaved N-terminal fragments of PAR(1), PAR(2), and PAR(4) at sites that would expose the tethered ligand (PAR(1) = PAR(4) > PAR(2)). Trypsin IV increased [Ca(2+)](i) in transfected cells expressing human PAR(1) and PAR(2) with similar potencies (PAR(1), 0.5 microm; PAR(2), 0.6 microm). p23 also cleaved fragments of PAR(1) and PAR(2) and signaled to cells expressing these receptors. Trypsin IV and p23 increased [Ca(2+)](i) in rat dorsal root ganglion neurons that responded to capsaicin and which thus mediate neurogenic inflammation and nociception. Intraplantar injection of trypsin IV and p23 in mice induced edema and granulocyte infiltration, which were not observed in PAR (-/-)(1)(trypsin IV) and PAR (-/-)(2) (trypsin IV and p23) mice. Trypsin IV and p23 caused thermal hyperalgesia and mechanical allodynia and hyperalgesia in mice, and these effects were absent in PAR (-/-)(2) mice but maintained in PAR (-/-)(1) mice. Thus, trypsin IV and p23 are inhibitor-resistant trypsins that can cleave and activate PARs, causing PAR(1)- and PAR(2)-dependent inflammation and PAR(2)-dependent hyperalgesia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cholecystitis is one of the most common gastrointestinal diseases. Inflammation induces the activation of proteases that can signal to cells by cleaving protease-activated receptors (PARs) to induce hemostasis, inflammation, pain, and repair. However, the distribution of PARs in the gallbladder is unknown, and their effects on gallbladder function have not been fully investigated. We localized immunoreactive PAR(1) and PAR(2) to the epithelium, muscle, and serosa of mouse gallbladder. mRNA transcripts corresponding to PAR(1) and PAR(2), but not PAR(4), were detected by RT-PCR and sequencing. Addition of thrombin and a PAR(1)-selective activating peptide (TFLLRN-NH(2)) to the serosal surface of mouse gallbladder mounted in an Ussing chamber stimulated an increase in short-circuit current in wild-type but not PAR(1) knockout mice. Similarly, serosally applied trypsin and PAR(2) activating peptide (SLIGRL-NH(2)) increased short-circuit current in wild-type but not PAR(2) knockout mice. Proteases and activating peptides strongly inhibited electrogenic responses to subsequent stimulation with the same agonist, indicating homologous desensitization. Removal of HCO(3)(-) ions from the serosal buffer reduced responses to thrombin and trypsin by >80%. Agonists of PAR(1) and PAR(2) increase intracellular Ca(2+) concentration in isolated and cultured gallbladder epithelial cells. The COX-2 inhibitor meloxicam and an inhibitor of CFTR prevented the stimulatory effect of PAR(1) but not PAR(2). Thus PAR(1) and PAR(2) are expressed in the epithelium of the mouse gallbladder, and serosally applied proteases cause a HCO(3)(-) secretion. The effects of PAR(1) but not PAR(2) depend on generation of prostaglandins and activation of CFTR. These mechanisms may markedly influence fluid and electrolyte secretion of the inflamed gallbladder when multiple proteases are generated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serine proteinases like thrombin can signal to cells by the cleavage/activation of proteinase-activated receptors (PARs). Although thrombin is a recognized physiological activator of PAR(1) and PAR(4), the endogenous enzymes responsible for activating PAR(2) in settings other than the gastrointestinal system, where trypsin can activate PAR(2), are unknown. We tested the hypothesis that the human tissue kallikrein (hK) family of proteinases regulates PAR signaling by using the following: 1) a high pressure liquid chromatography (HPLC)-mass spectral analysis of the cleavage products yielded upon incubation of hK5, -6, and -14 with synthetic PAR N-terminal peptide sequences representing the cleavage/activation motifs of PAR(1), PAR(2), and PAR(4); 2) PAR-dependent calcium signaling responses in cells expressing PAR(1), PAR(2), and PAR(4) and in human platelets; 3) a vascular ring vasorelaxation assay; and 4) a PAR(4)-dependent rat and human platelet aggregation assay. We found that hK5, -6, and -14 all yielded PAR peptide cleavage sequences consistent with either receptor activation or inactivation/disarming. Furthermore, hK14 was able to activate PAR(1), PAR(2), and PAR(4) and to disarm/inhibit PAR(1). Although hK5 and -6 were also able to activate PAR(2), they failed to cause PAR(4)-dependent aggregation of rat and human platelets, although hK14 did. Furthermore, the relative potencies and maximum effects of hK14 and -6 to activate PAR(2)-mediated calcium signaling differed. Our data indicate that in physiological settings, hKs may represent important endogenous regulators of the PARs and that different hKs can have differential actions on PAR(1), PAR(2), and PAR(4).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Dextran-40 is effective in reducing postoperative Doppler-detectable embolization in patients undergoing carotid endarterectomy (CEA). Dextrans are thought to have antithrombotic and antiplatelet effects. The mode of action is unclear. In rats, dextran blocks uptake of tissue plasminogen activator (tPA) by mannose-binding receptors. Because this would have the effect of enhancing endogenous fibrinolysis, we explored this effect of dextran-40 on fibrinolysis in man. METHODS: Twenty patients undergoing endovascular stenting for abdominal aortic aneurysm were randomized to receive 100 mL of 10% dextran-40 or saline, over 1 hour, during their operation in addition to heparin. Blood samples were taken preoperatively, intraoperatively (immediately after operative procedure), and 24 hours postoperatively. Thrombi were formed in a Chandler loop and used to assess endogenous fibrinolysis over 24 hours, measured as the fall in thrombus weight, and the release of fluorescently labelled fibrinogen from the thrombus. Plasma samples were analyzed for markers of fibrinolysis; plasmin-antiplasmin (PAP), PAI-1, and t-PA, and for functional von Willebrand factor (vWF). Platelet response to thrombin and other agonists was measured by flow cytometry. RESULTS: Thrombi formed ex vivo from the intraoperative blood samples from the dextran-treated patients exhibited significantly greater fibrinolysis vs preoperative samples, seen both as a significantly greater percentage reduction in thrombus weight (from 34.7% to 70.6% reduction) and as an 175% increase in the release of fluorescence (P < .05). Fibrinolysis returned to baseline levels the next day. No change was seen in the saline-treated group. Plasma levels of PAP and PAI-1 increased significantly postoperatively in the dextran-treated group vs the saline group (P < .05). The postoperative level of functional VWF was significantly lower in the dextran-treated group vs controls. A specific reduction occurred in the platelet response to thrombin, but not to other agonists, in the intraoperative samples from the dextran-treated group (11.1% vs 37.1%; P = .022), which was not seen in the controls. CONCLUSIONS: These data are consistent with a rise in plasmin due to dextran blockade of tPA uptake in vivo, leading to enhanced fibrinolysis, cleavage of vWF and of the platelet protease-activated receptor-1 (PAR-1) thrombin receptor. This suggests that dextran exerts a combined therapeutic effect, enhancing endogenous fibrinolysis, whilst also reducing platelet adhesion to vWF and platelet activation by thrombin. The proven antithrombotic efficacy of low-dose dextran in carotid surgery may be applicable to wider therapeutic use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protease activated receptor-2 (PAR-2) belongs to a family of G-protein-coupled receptors that are activated by proteolysis. Trypsin cleaves PAR-2, exposing an N-terminal tethered ligand (SLIGRL) that activates the receptor. Messenger RNA (mRNA) for PAR-2 was found in guinea pig airway tissue by reverse transcription-polymerase chain reaction, and PAR-2 was found by immunohistochemistry in airway epithelial and smooth-muscle cells. In anesthetized guinea pigs, trypsin and SLIGRL-NH(2) (given intratracheally or intravenously) caused a bronchoconstriction that was inhibited by the combination of tachykinin-NK(1) and -NK(2) receptor antagonists and was potentiated by inhibition of nitric oxide synthase (NOS). Trypsin and SLIGRL-NH(2) relaxed isolated trachea and main bronchi, and contracted intrapulmonary bronchi. Relaxation of main bronchi was abolished or reversed to contraction by removal of epithelium, administration of indomethacin, and NOS inhibition. PAR-1, PAR-3, and PAR-4 were not involved in the bronchomotor action of either trypsin or SLIGRL-NH(2), because ligands of these receptors were inactive either in vitro or in vivo, and because thrombin (a PAR-1 and PAR-3 agonist) did not show cross-desensitization with PAR-2 agonists in vivo. Thus, we have localized PAR-2 to the guinea-pig airways, and have shown that activation of PAR-2 causes multiple motor effects in these airways, including in vivo bronchoconstriction, which is in part mediated by a neural mechanism.