7 resultados para PA effect
em CentAUR: Central Archive University of Reading - UK
Resumo:
Phytic acid (PA) is the main phosphorus storage compound in cereals, legumes and oil seeds. In human populations where phytate-rich cereals such as wheat, maize and rice are a staple food, phytate may lead to mineral and trace element deficiency. Zinc appears to be the trace element whose bioavailability is most influenced by PA. Furthermore, several studies in humans as well as in monogastric animals clearly indicate an inhibition of non-haem iron absorption at marginal iron supply due to phytic acid. In fact PA seems to be, at least partly, responsible for the low absorption efficiency and high incidence of iron deficiency anaemia evident in most developing countries, where largely vegetarian diets are consumed Microbial phytases have provided a realistic means of improving mineral availability from traditionally high-phytate diets. In fact it has been consistently shown that Aspergillus phytases significantly enhance the absorption of calcium, magnesium and zinc in pigs and rats. Furthermore there are a few studies in humans indicating an improvement of iron bioavailability due to microbial phytase.
Resumo:
Time dependent gas hold-up generated in the 0.3 and 0.6 m diameter vessels using high viscosity castor oil and carboxy methyl cellulose (CMC) solution was compared on the basis of impeller speed (N) and gas velocity (V-G). Two types of hold-up were distinguished-the hold-up due to tiny bubbles (epsilon(ft)) and total hold-up (epsilon(f)), which included large and tiny bubbles. It was noted that vessel diameter (i.e. the scale of operation) significantly influences (i) the trends and the values of epsilon(f) and epsilon(ft), and (ii) the values of tau (a constant reflecting the time dependency of hold-up). The results showed that a scale independent correlation for gas hold-up of the form epsilon(f) or epsilon(ft) = A(N or P-G/V)(a) (V-G)(b), where "a" and "b" are positive constants is not appropriate for viscous liquids. This warrants further investigations into the effect of vessel diameter on gas hold-up in impeller agitated high viscosity liquids (mu or mu(a) > 0.4 Pa s). (C) 2003 Elsevier B.V. All rights reserved.
Effect of milk fat concentration and gel firmness on syneresis during curd stirring in cheese-making
Resumo:
An experiment was undertaken to investigate the effect of milk fat level (0%, 2.5% and 5.0% w/w) and gel firmness level at cutting (5, 35 and 65 Pa) on indices of syneresis, while curd was undergoing stirring. The curd moisture content, yield of whey, fat in whey and casein fines in whey were measured at fixed intervals between 5 and 75 min after cutting the gel. The casein level in milk and clotting conditions was kept constant in all trials. The trials were carried out using recombined whole milk in an 11 L cheese vat. The fat level in milk had a large negative effect on the yield of whey. A clear effect of gel firmness on casein fines was observed. The best overall prediction, in terms of coefficient of determination, was for curd moisture content using milk fat concentration, time after gel cutting and set-to-cut time (R2 = 0.95).
Resumo:
The collagen production of human dermal and corneal fibroblasts in contact with solutions of the peptide amphiphile (PA) C16–KTTKS is investigated and related to its self-assembly into nanotape structures. This PA is used in antiwrinkle cosmeceutical applications (trade name Matrixyl). We prove that C16–KTTKS stimulates collagen production in a concentration-dependent manner close to the critical aggregation concentration determined from pyrene fluorescence spectroscopy. This suggests that self-assembly and the stimulation of collagen production are inter-related.
Resumo:
The collagen production of human dermal and corneal fibroblasts in contact with solutions of the peptide amphiphile (PA) C16−KTTKS is investigated and related to its self-assembly into nanotape structures. This PA is used in antiwrinkle cosmeceutical applications (trade name Matrixyl). We prove that C16−KTTKS stimulates collagen production in a concentration-dependent manner close to the critical aggregation concentration determined from pyrene fluorescence spectroscopy. This suggests that self-assembly and the stimulation of collagen production are inter-related.
Resumo:
BACKGROUND: Dextran-40 is effective in reducing postoperative Doppler-detectable embolization in patients undergoing carotid endarterectomy (CEA). Dextrans are thought to have antithrombotic and antiplatelet effects. The mode of action is unclear. In rats, dextran blocks uptake of tissue plasminogen activator (tPA) by mannose-binding receptors. Because this would have the effect of enhancing endogenous fibrinolysis, we explored this effect of dextran-40 on fibrinolysis in man. METHODS: Twenty patients undergoing endovascular stenting for abdominal aortic aneurysm were randomized to receive 100 mL of 10% dextran-40 or saline, over 1 hour, during their operation in addition to heparin. Blood samples were taken preoperatively, intraoperatively (immediately after operative procedure), and 24 hours postoperatively. Thrombi were formed in a Chandler loop and used to assess endogenous fibrinolysis over 24 hours, measured as the fall in thrombus weight, and the release of fluorescently labelled fibrinogen from the thrombus. Plasma samples were analyzed for markers of fibrinolysis; plasmin-antiplasmin (PAP), PAI-1, and t-PA, and for functional von Willebrand factor (vWF). Platelet response to thrombin and other agonists was measured by flow cytometry. RESULTS: Thrombi formed ex vivo from the intraoperative blood samples from the dextran-treated patients exhibited significantly greater fibrinolysis vs preoperative samples, seen both as a significantly greater percentage reduction in thrombus weight (from 34.7% to 70.6% reduction) and as an 175% increase in the release of fluorescence (P < .05). Fibrinolysis returned to baseline levels the next day. No change was seen in the saline-treated group. Plasma levels of PAP and PAI-1 increased significantly postoperatively in the dextran-treated group vs the saline group (P < .05). The postoperative level of functional VWF was significantly lower in the dextran-treated group vs controls. A specific reduction occurred in the platelet response to thrombin, but not to other agonists, in the intraoperative samples from the dextran-treated group (11.1% vs 37.1%; P = .022), which was not seen in the controls. CONCLUSIONS: These data are consistent with a rise in plasmin due to dextran blockade of tPA uptake in vivo, leading to enhanced fibrinolysis, cleavage of vWF and of the platelet protease-activated receptor-1 (PAR-1) thrombin receptor. This suggests that dextran exerts a combined therapeutic effect, enhancing endogenous fibrinolysis, whilst also reducing platelet adhesion to vWF and platelet activation by thrombin. The proven antithrombotic efficacy of low-dose dextran in carotid surgery may be applicable to wider therapeutic use.
Resumo:
Transitions in nanostructure driven by pH are observed for a self-assembling peptide amphiphile (PA) with a cationic pentapeptide headgroup. At pH 3, the PA forms flat tape-like structures, while at pH 4 the PA assembles into twisted right handed structures. These twisted structures transform again to flat tape-like structures at pH 7. In complete contrast, spherical micelles are observed at pH 2. These changes in response to pH may be relevant to biological and pharmaceutical applications of this PA in skincare.