7 resultados para P300

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: P300 and steady-state visual evoked potential(SSVEP) approaches have been widely used for brain–computer interface (BCI) systems. However, neither of these approaches can work for all subjects. Some groups have reported that a hybrid BCI that combines two or more approaches might provide BCI functionality to more users. Hybrid P300/SSVEP BCIs have only recently been developed and validated, and very few avenues to improve performance have been explored. New method: The present study compares an established hybrid P300/SSVEP BCIs paradigm to a new paradigm in which shape changing, instead of color changing, is adopted for P300 evocation to decrease the degradation on SSVEP strength. Result: The result shows that the new hybrid paradigm presented in this paper yields much better performance than the normal hybrid paradigm. Comparison with existing method: A performance increase of nearly 20% in SSVEP classification is achieved using the new hybrid paradigm in comparison with the normal hybrid paradigm.Allthe paradigms except the normal hybrid paradigm used in this paper obtain 100% accuracy in P300 classification. Conclusions: The new hybrid P300/SSVEP BCIs paradigm in which shape changing, instead of color changing, could obtain as high classification accuracy of SSVEP as the traditional SSVEP paradigm and could obtain as high classification accuracy of P300 as the traditional P300 paradigm. P300 did not interfere with the SSVEP response using the new hybrid paradigm presented in this paper, which was superior to the normal hybrid P300/SSVEP paradigm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interferences from the spatially adjacent non-target stimuli evoke ERPs during non-target sub-trials and lead to false positives. This phenomenon is commonly seen in visual attention based BCIs and affects the performance of BCI system. Although, users or subjects tried to focus on the target stimulus, they still could not help being affected by conspicuous changes of the stimuli (flashes or presenting images) which were adjacent to the target stimulus. In view of this case, the aim of this study is to reduce the adjacent interference using new stimulus presentation pattern based on facial expression changes. Positive facial expressions can be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast will be big enough to evoke strong ERPs. In this paper, two different conditions (Pattern_1, Pattern_2) were used to compare across objective measures such as classification accuracy and information transfer rate as well as subjective measures. Pattern_1 was a “flash-only” pattern and Pattern_2 was a facial expression change of a dummy face. In the facial expression change patterns, the background is a positive facial expression and the stimulus is a negative facial expression. The results showed that the interferences from adjacent stimuli could be reduced significantly (P<;0.05) by using the facial expression change patterns. The online performance of the BCI system using the facial expression change patterns was significantly better than that using the “flash-only” patterns in terms of classification accuracy (p<;0.01), bit rate (p<;0.01), and practical bit rate (p<;0.01). Subjects reported that the annoyance and fatigue could be significantly decreased (p<;0.05) using the new stimulus presentation pattern presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new paradigm is presented, to improve the performance of audio-based P300 Brain-computer interfaces (BCIs), by using spatially distributed natural sound stimuli. The new paradigm was compared to a conventional paradigm using spatially distributed sound to demonstrate the performance of this new paradigm. The results show that the new paradigm enlarged the N200 and P300 components, and yielded significantly better BCI performance than the conventional paradigm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate single trial P300 classification lends itself to fast and accurate control of Brain Computer Interfaces (BCIs). Highly accurate classification of single trial P300 ERPs is achieved by characterizing the EEG via corresponding stationary and time-varying Wackermann parameters. Subsets of maximally discriminating parameters are then selected using the Network Clustering feature selection algorithm and classified with Naive-Bayes and Linear Discriminant Analysis classifiers. Hence the method is assessed on two different data-sets from BCI competitions and is shown to produce accuracies of between approximately 70% and 85%. This is promising for the use of Wackermann parameters as features in the classification of single-trial ERP responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. New method: We propose a complete pipeline for the cluster analysis of ERP data. To increase the signalto-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA)to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). Results: After validating the pipeline on simulated data, we tested it on data from two experiments – a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past decade, brain–computer interfaces (BCIs) have rapidly developed, both in technological and application domains. However, most of these interfaces rely on the visual modality. Only some research groups have been studying non-visual BCIs, primarily based on auditory and, sometimes, on somatosensory signals. These non-visual BCI approaches are especially useful for severely disabled patients with poor vision. From a broader perspective, multisensory BCIs may offer more versatile and user-friendly paradigms for control and feedback. This chapter describes current systems that are used within auditory and somatosensory BCI research. Four categories of noninvasive BCI paradigms are employed: (1) P300 evoked potentials, (2) steady-state evoked potentials, (3) slow cortical potentials, and (4) mental tasks. Comparing visual and non-visual BCIs, we propose and discuss different possible multisensory combinations, as well as their pros and cons. We conclude by discussing potential future research directions of multisensory BCIs and related research questions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Some studies have proven that a conventional visual brain computer interface (BCI) based on overt attention cannot be used effectively when eye movement control is not possible. To solve this problem, a novel visual-based BCI system based on covert attention and feature attention has been proposed and was called the gaze-independent BCI. Color and shape difference between stimuli and backgrounds have generally been used in examples of gaze-independent BCIs. Recently, a new paradigm based on facial expression changes has been presented, and obtained high performance. However, some facial expressions were so similar that users couldn't tell them apart, especially when they were presented at the same position in a rapid serial visual presentation (RSVP) paradigm. Consequently, the performance of the BCI is reduced. New Method: In this paper, we combined facial expressions and colors to optimize the stimuli presentation in the gaze-independent BCI. This optimized paradigm was called the colored dummy face pattern. It is suggested that different colors and facial expressions could help users to locate the target and evoke larger event-related potentials (ERPs). In order to evaluate the performance of this new paradigm, two other paradigms were presented, called the gray dummy face pattern and the colored ball pattern. Comparison with Existing Method(s): The key point that determined the value of the colored dummy faces stimuli in BCI systems was whether the dummy face stimuli could obtain higher performance than gray faces or colored balls stimuli. Ten healthy participants (seven male, aged 21–26 years, mean 24.5 ± 1.25) participated in our experiment. Online and offline results of four different paradigms were obtained and comparatively analyzed. Results: The results showed that the colored dummy face pattern could evoke higher P300 and N400 ERP amplitudes, compared with the gray dummy face pattern and the colored ball pattern. Online results showed that the colored dummy face pattern had a significant advantage in terms of classification accuracy (p < 0.05) and information transfer rate (p < 0.05) compared to the other two patterns. Conclusions: The stimuli used in the colored dummy face paradigm combined color and facial expressions. This had a significant advantage in terms of the evoked P300 and N400 amplitudes and resulted in high classification accuracies and information transfer rates. It was compared with colored ball and gray dummy face stimuli.