49 resultados para Overtone Transitions
em CentAUR: Central Archive University of Reading - UK
Resumo:
A simple diagrammatic rule is presented for determining the rotational selection rules governing transitions between any pair of vibronic states in electric dipole spectra of symmetric top molecules. The rule is useful in cases where degenerate vibronic levels with first-order Coriolis splittings occur, because it gives immediately the selection rule for the (+l) and (-l) components in any degenerate state. The rule is also helpful in determining the symmetry species and the effective zeta constants in overtone and combination levels involving degenerate vibrations. Particular attention is devoted to the conventions concerning the signs of zeta constants.
Resumo:
Sudden stratospheric warmings (SSWs) are usually considered to be initiated by planetary wave activity. Here it is asked whether small-scale variability (e.g., related to gravity waves) can lead to SSWs given a certain amount of planetary wave activity that is by itself not sufficient to cause a SSW. A highly vertically truncated version of the Holton–Mass model of stratospheric wave–mean flow interaction, recently proposed by Ruzmaikin et al., is extended to include stochastic forcing. In the deterministic setting, this low-order model exhibits multiple stable equilibria corresponding to the undisturbed vortex and SSW state, respectively. Momentum forcing due to quasi-random gravity wave activity is introduced as an additive noise term in the zonal momentum equation. Two distinct approaches are pursued to study the stochastic system. First, the system, initialized at the undisturbed state, is numerically integrated many times to derive statistics of first passage times of the system undergoing a transition to the SSW state. Second, the Fokker–Planck equation corresponding to the stochastic system is solved numerically to derive the stationary probability density function of the system. Both approaches show that even small to moderate strengths of the stochastic gravity wave forcing can be sufficient to cause a SSW for cases for which the deterministic system would not have predicted a SSW.
Resumo:
Despite an emerging body of work on youth transitions, research has yet to explore the often unconventional routes to adulthood for young people marginalised through poverty. By drawing on interviews with 60 young commercial sex workers in Ethiopia, this paper explores the connections between poverty, migration and sex work and demonstrates that sex work provides a risky alternative, but often successful, path to independence for some rural-urban migrants. The paper concludes by offering recommendations for policies that seek to support young sex workers by enabling them to maintain their independence while seeking different employment.
Resumo:
Despite an emerging body of work on youth transitions, research has yet to explore the often unconventional routes to adulthood for young people marginalised through poverty. By drawing on interviews with 60 young commercial sex workers in Ethiopia, this paper explores the connections between poverty, migration and sex work and demonstrates that sex work provides a risky alternative, but often successful, path to independence for some rural-urban migrants. The paper concludes by offering recommendations for policies that seek to support young sex workers by enabling them to maintain their independence while seeking different employment.
Resumo:
This paper explores the ways that young people express their agency and negotiate complex lifecourse transitions according to gender, age and inter- and intra-generational norms in sibling-headed households affected by AIDS in East Africa. Based on findings from a qualitative and participatory pilot study in Tanzania and Uganda, I examine young people's socio-spatial and temporal experiences of heading the household and caring for their siblings following their parent's/relative's death. Key dimensions of young people's caring pathways and life transitions are discussed: transitions into sibling care; the ways young people manage changing roles within the family; and the ways that young people are positioned and seek to position themselves within the community. The research reveals the relational and embodied nature of young people's life transitions over time and space. By living together independently, young people constantly reproduce and reconfigure gendered, inter- and intra-generational norms of ‘the family’, transgressing the boundaries of ‘childhood’, ‘youth’ and ‘adulthood’. Although young people take on ‘adult’ responsibilities and demonstrate their competencies in ‘managing their own lives’, this does not necessarily translate into more equal power relations with adults in the community. The research reveals the marginal ‘in-between’ place that young people occupy between local and global discourses of ‘childhood’ and ‘youth’ that construct them as ‘deviant’. Although young people adopt a range of strategies to resist marginalisation and harassment, I argue that constraints of poverty, unequal gender and generational power relations and the emotional impacts of sibling care, stigmatisation and exclusion can undermine their ability to exert agency and control over their sexual relationships, schooling, livelihood strategies and future lifecourse transitions.
Resumo:
Symmetry restrictions on Raman selection rules can be obtained, quite generally, by considering a Raman allowed transition as the result of two successive dipole allowed transitions, and imposing the usual symmetry restrictions on the dipole transitions. This leads to the same results as the more familiar polarizability theory, but the vibration-rotation selection rules are easier to obtain by this argument. The selection rules for symmetric top molecules involving the (+l) and (-l) components of a degenerate vibrational level with first-order Coriolis splitting are derived in this paper. It is shown that these selection rules depend on the order of the highest-fold symmetry axis Cn, being different for molecules with n=3, n=4, or n ≧ 5; moreover the selection rules are different again for molecules belonging to the point groups Dnd with n even, and Sm with 1/2m even, for which the highest-fold symmetry axes Cn and Sm are related by m=2n. Finally it is shown that an apparent anomaly between the observed Raman and infra-red vibration-rotation spectra of the allene molecule is resolved when the correct selection rules are used, and a value for the A rotational constant of allene is derived without making use of the zeta sum rule.
Resumo:
In this work preliminary results are reported on an extensive vibrational analysis of the molecules HCCX and DCCX with X = F and Cl, in which a number of anharmonic resonances are analysed. The importance of quartic anharmonic resonances in these molecular types is reported involving the effective constants K1244 and K1255, and these are related to the corresponding resonances in acetylene and its isotopomers. The correct analysis of Fermi resonances and quartic anharmonic resonances is important not only in reproducing the high overtone energy levels, but also in fitting the observed rotational constants, and in determining the αr constants and hence the equilibrium rotational constants. In this paper we revise our recent analysis of the equilibrium structure of HCCF in the light of these effects.
Resumo:
High-resolution infrared and near-infrared spectra have been observed for more than 80 overtone bands of the HCCF molecule, including two CH stretching overtones in the visible region. Many of these have been analysed, and many more are in the course of analysis and will be reported later. All fundamentals have now been rotationally analysed and the equilibrium rotational constant determined. These data provide a testing ground for anharmonic force-field analyses, and they are discussed briefly in this connection.
Resumo:
Intracavity photoacoustic overtone spectrum of monofluoroacetylene, HCCF, has been recorded in the wave number region 10 750–14 500 cm−1 with a titanium:sapphire ring laser. The spectrum contains many dense vibration–rotation band systems which can be resolved with Doppler limited resolution. Altogether 58 individual overtone bands have been analyzed rotationally. Many of the observed bands show perturbations of which some have been attributed to anharmonic resonance interactions. A Fermi resonance model based on conventional rectilinear normal coordinate theory has been used to assign vibrationally bands from this work and from earlier studies. Many of the observed vibrational term values and rotational constants can be reproduced well with this model. The results show the importance of the Fermi resonance interactions at the high overtone excitations.
Resumo:
Rovibrational energy levels, transition frequencies, and linestrengths are computed variationally for the sulfur hydrides D2S and HDS, using ab initio potential energy and dipole surfaces. Wave-numbers for the pure rotational transitions agree to within 0.2 cm−1 of the experimental lines. For the fundamental vibrational transitions, the band origins for D2S are 860.4, 1900.6, and 1912.0 cm−1 for ν2, ν1, and ν3, respectively, compared with the corresponding experimental values of 855.4, 1896.4, and 1910.2 cm−1. For HDS, we compute ν2 to be 1039.4 cm−1, compared with the experimental value of 1032.7 cm−1. The relative merits of local and normal mode descriptions for the overtone stretching band origins are discussed. Our results confirm the local mode nature of the H2S, D2S, and HDS system.
Resumo:
The intracavity photoacoustic dye laser spectrum of CHCl3 in the gas phase at 16 350 cm−1 is reported. The v=6–0 overtone of the CH stretch is observed, and found to exhibit a rotational band contour closely analogous to the v=1–0 fundamental. The implication of this result for intramolecular vibrational energy redistribution is discussed.
Resumo:
The a/b hybrid-type ν1 fundamental and 2ν2 overtone bands of HOF were investigated by FTIR spectroscopy with a resolution close to 0.008 cm−1. Improved ground state parameters of HOF were determined from a merge of more than 3000 ground state combination differences formed from ν1 and previously measured ν2 transitions with the reported pure rotational lines. Excited state parameters of the v2 = 2 state, ν0 = 2686.924 6(1) and χ22 = −9.942 4(1) cm−1, were determined employing Watson's A-reduced Hamiltonian up to sixth order in I′ representation. The 2ν2 state was found to be unperturbed, the excited state parameters being closely related to those of ν2.