14 resultados para Organization Structure
em CentAUR: Central Archive University of Reading - UK
Resumo:
The technique of linear responsibility analysis is used for a retrospective case study of a private industrial development consisting of an extension to existing buildings to provide a warehouse, services block and packing line. The organizational structure adopted on the project is analysed using concepts from systems theory which are included in Walker's theoretical model of the structure of building project organizations (Walker, 1981). This model proposes that the process of building provision can be viewed as systems and subsystems which are differentiated from each other at decision points. Further to this, the subsystems can be viewed as the interaction of managing system and operating system. Using Walker's model, a systematic analysis of the relationships between the contributors gives a quantitative assessment of the efficacy of the organizational structure used. The causes of the client's dissatisfaction with the outcome of the project were lack of integration and complexity of the managing system. However, there was a high level of satisfaction with the completed project and this is reflected by the way in which the organization structure corresponded to the model's propositions.
Resumo:
The technique of linear responsibility analysis is used for a retrospective case study of a private development consisting of an extension to an existing building to provide a wholesale butchery facility. The project used a conventionally organized management process. The organization structure adopted on the project is analysed using concepts from the systems theory, which are included in Walkers theoretical model of the structure of building project organizations. This model proposes that the process of building provision can be viewed as systems and sub-systems that are differentiated from each other at decision points. Further to this, the sub-systems can be viewed as the interaction of managing system and operating system. Using Walkers model, a systematic analysis of the relationships between the contributors gives a quantitative assessment of the efficiency of the organizational structure used. The project's organization structure diverged from the models propositions resulting in delay to the project's completion and cost overrun but the client was satisfied with the project functionally.
Resumo:
The technique of linear responsibility analysis is used for a retrospective case study of a private industrial development consisting of an engineering factory and offices. A multi-disciplinary professional practice was used to manage and design the project. The organizational structure adopted on the project is analysed using concepts from systems theory which are included in Walker's theoretical model of the structure of building project organizations (Walker, 1981). This model proposes that the process of buildings provision can be viewed as systems and sub-systems which are differentiated form each other at decision points. Further to this, the sub-systematic analysis of the relationship between the contributors gives a quantitative assessment of the efficiency of the organizational structure used. There was a high level of satisfaction with the completed project and this is reflected by the way in which the organization structure corresponded to the model's proposition. However, the project was subject to string environmental forces which the project organization was not capable of entirely overcoming.
Resumo:
The management of a public sector project is analysed using a model developed from systems theory. Linear responsibility analysis is used to identify the primary and key decision structure of the project and to generate quantitative data regarding differentiation and integration of the operating system, the managing system and the client/project team. The environmental context of the project is identified. Conclusions are drawn regarding the project organization structure's ability to cope with the prevailing environmental conditions. It is found that the complexity of the managing system imposed on the project was unable to achieve this and created serious deficiencies in the outcome of the project.
Resumo:
Gaining or maintaining a “contractor's” competitive advantage is not easy as it is determined by a large number of factors. Identification of critical success factors (CSFs) allows one to reduce the vast number of factors to some manageable few but vital ones. Based on the CSFs, contractors' limited resources such as money and manpower can be allocated and aligned appropriately for yielding a maximum outcome of overall competitiveness. This paper describes the CSFs identified from a survey study carried out in Mainland China. The ranking analysis of the survey results shows that 35 factors are rated as critical for determining the competitiveness of a contractor. Factor analysis reveals that the 35 CSFs identified can be grouped into eight clusters, namely, project management skills, organization structure, resources, competitive strategy, relationships, bidding, marketing, and technology. The CSFs in this study provide a vehicle for guiding a contractor in managing its resources in order to improve competitive advantage. The study also provides insights into the management of competitiveness for contractors that are operating in the particular context of the Chinese construction industry.
Resumo:
Purpose – Multinationals have always needed an operating model that works – an effective plan for executing their most important activities at the right levels of their organization, whether globally, regionally or locally. The choices involved in these decisions have never been obvious, since international firms have consistently faced trade‐offs between tailoring approaches for diverse local markets and leveraging their global scale. This paper seeks a more in‐depth understanding of how successful firms manage the global‐local trade‐off in a multipolar world. Design methodology/approach – This paper utilizes a case study approach based on in‐depth senior executive interviews at several telecommunications companies including Tata Communications. The interviews probed the operating models of the companies we studied, focusing on their approaches to organization structure, management processes, management technologies (including information technology (IT)) and people/talent. Findings – Successful companies balance global‐local trade‐offs by taking a flexible and tailored approach toward their operating‐model decisions. The paper finds that successful companies, including Tata Communications, which is profiled in‐depth, are breaking up the global‐local conundrum into a set of more manageable strategic problems – what the authors call “pressure points” – which they identify by assessing their most important activities and capabilities and determining the global and local challenges associated with them. They then design a different operating model solution for each pressure point, and repeat this process as new strategic developments emerge. By doing so they not only enhance their agility, but they also continually calibrate that crucial balance between global efficiency and local responsiveness. Originality/value – This paper takes a unique approach to operating model design, finding that an operating model is better viewed as several distinct solutions to specific “pressure points” rather than a single and inflexible model that addresses all challenges equally. Now more than ever, developing the right operating model is at the top of multinational executives' priorities, and an area of increasing concern; the international business arena has changed drastically, requiring thoughtfulness and flexibility instead of standard formulas for operating internationally. Old adages like “think global and act local” no longer provide the universal guidance they once seemed to.
Resumo:
The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.
Resumo:
Objective: Our objective in this paper is to assess diets in the European Union (EU) in relation to the recommendations of the recent World Health Organization/Food and Agriculture Organization expert consultation and to show how diets have changed between 1961 and 2001. Data and methods: Computations make use of FAOSTAT data on food availability at country level linked to a food composition database to convert foods to nutrients. We further explore the growing similarity of diets in the EU by making use of a consumption similarity index. The index provides a single number measure of dietary overlap between countries. Results: The data confirm the excessive consumption by almost all countries of saturated fats, cholesterol and sugars, and the convergence of nutrient intakes across the EU. Whereas in 1961 diets in several European countries were more similar to US diets than to those of other European countries, this is no longer the case; moreover, while EU diets have become more homogeneous, the EU as a whole and the USA have become less similar over time. Conclusions: Although the dominant cause of greater similarity in EU diets over the period studied is increased intakes in Mediterranean countries of saturated fats, cholesterol and sugar, also important are reductions in saturated fat and sugar in some Northern European countries. This suggests that healthy eating messages are finally having an impact on diets; a distinctly European diet may also be emerging.
Resumo:
An efficient method of combining neutron diffraction data over an extended Q range with detailed atomistic models is presented. A quantitative and qualitative mapping of the organization of the chain conformation in both glass and liquid phase has been performed. The proposed structural refinement method is based on the exploitation of the intrachain features of the diffraction pattern by the use of internal coordinates for bond lengths, valence angles and torsion rotations. Models are built stochastically by assignment of these internal coordinates from probability distributions with limited variable parameters. Variation of these parameters is used in the construction of models that minimize the differences between the observed and calculated structure factors. A series of neutron scattering data of 1,4-polybutadiene at the region 20320 K is presented. Analysis of the experimental data yield bond lengths for C-C and C=C of 1.54 and 1.35 Å respectively. Valence angles of the backbone were found to be at 112 and 122.8 for the CCC and CC=C respectively. Three torsion angles corresponding to the double bond and the adjacent R and β bonds were found to occupy cis and trans, s(, trans and g( and trans states, respectively. We compare our results with theoretical predictions, computer simulations, RIS models, and previously reported experimental results.
Resumo:
A new approach to the study of the local organization in amorphous polymer materials is presented. The method couples neutron diffraction experiments that explore the structure on the spatial scale 1–20 Å with the reverse Monte Carlo fitting procedure to predict structures that accurately represent the experimental scattering results over the whole momentum transfer range explored. Molecular mechanics and molecular dynamics techniques are also used to produce atomistic models independently from any experimental input, thereby providing a test of the viability of the reverse Monte Carlo method in generating realistic models for amorphous polymeric systems. An analysis of the obtained models in terms of single chain properties and of orientational correlations between chain segments is presented. We show the viability of the method with data from molten polyethylene. The analysis derives a model with average C-C and C-H bond lengths of 1.55 Å and 1.1 Å respectively, average backbone valence angle of 112, a torsional angle distribution characterized by a fraction of trans conformers of 0.67 and, finally, a weak interchain orientational correlation at around 4 Å.
Resumo:
We present a new methodology that couples neutron diffraction experiments over a wide Q range with single chain modelling in order to explore, in a quantitative manner, the intrachain organization of non-crystalline polymers. The technique is based on the assignment of parameters describing the chemical, geometric and conformational characteristics of the polymeric chain, and on the variation of these parameters to minimize the difference between the predicted and experimental diffraction patterns. The method is successfully applied to the study of molten poly(tetrafluoroethylene) at two different temperatures, and provides unambiguous information on the configuration of the chain and its degree of flexibility. From analysis of the experimental data a model is derived with CC and CF bond lengths of 1.58 and 1.36 Å, respectively, a backbone valence angle of 110° and a torsional angle distribution which is characterized by four isometric states, namely a split trans state at ± 18°, giving rise to a helical chain conformation, and two gauche states at ± 112°. The probability of trans conformers is 0.86 at T = 350°C, which decreases slightly to 0.84 at T = 400°C. Correspondingly, the chain segments are characterized by long all-trans sequences with random changes in sign, rather anisotropic in nature, which give rise to a rather stiff chain. We compare the results of this quantitative analysis of the experimental scattering data with the theoretical predictions of both force fields and molecular orbital conformation energy calculations.
Resumo:
The genome structure of Colletotrichum lindemuthianum in a set of diverse isolates was investigated using a combination of physical and molecular approaches. Flow cytometric measurement of genome size revealed significant variation between strains, with the smallest genome representing 59% of the largest. Southern-blot profiles of a cloned fungal telomere revealed a total chromosome number varying from 9 to 12. Chromosome separations using pulsed-field gel electrophoresis (PFGE) showed that these chromosomes belong to two distinct size classes: a variable number of small (< 2.5 Mb) polymorphic chromosomes and a set of unresolved chromosomes larger than 7 Mb. Two dispersed repeat elements were shown to cluster on distinct polymorphic minichromosomes. Single-copy flanking sequences from these repeat-containing clones specifically marked distinct small chromosomes. These markers were absent in some strains, indicating that part of the observed variability in genome organization may be explained by the presence or absence, in a given strain, of dispensable genomic regions and/or chromosomes.
Resumo:
We introduce semiconductor quantum dot-based fluorescence imaging with approximately 2-fold increased optical resolution in three dimensions as a method that allows both studying cellular structures and spatial organization of biomolecules in membranes and subcellular organelles. Target biomolecules are labelled with quantum dots via immunocytochemistry. The resolution enhancement is achieved by three-photon absorption of quantum dots and subsequent fluorescence emission from a higher-order excitonic state. Different from conventional multiphoton microscopy, this approach can be realized on any confocal microscope without the need for pulsed excitation light. We demonstrate quantum dot triexciton imaging (QDTI) of the microtubule network of U373 cells, 3D imaging of TNF receptor 2 on the plasma membrane of HeLa cells, and multicolor 3D imaging of mitochondrial cytochrome c oxidase and actin in COS-7 cells.