20 resultados para Organic mineral

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) concentrations have been rising in streams and lakes draining catchments with organic soils across Northern Europe. These increases have shown a correlation with decreased sulphate and chloride concentrations. One hypothesis to explain this phenomenon is that these relationships are due an increased in DOC release from soils to freshwaters, caused by a decline in pollutant sulphur and sea-salt deposition. We carried out controlled deposition experiments in the laboratory on intact peat and organomineral O-horizon cores to test this hypothesis. Preliminary data showed a clear correlation between the change in soil water pH and change in DOC concentrations, however uncertainty still remains about whether this is due to changes in biological activity or chemical solubility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use a soil carbon (C) model (RothC), driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC) stocks. The results suggest an overall global increase in SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. The impacts of projected land use changes are also simulated, but have relatively minor impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP) change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop looking for a single answer regarding whether SOC stocks will increase or decrease under future climate, since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims Current estimates of soil organic carbon (SOC) are based largely on surficial measurements to depths of 0.3 to 1 m. Many of the world’s soils greatly exceed 1 m depth and there are numerous reports of biological activity to depths of many metres. Although SOC storage to depths of up to 8 m has been previously reported, the extent to which SOC is stored at deeper depths in soil profiles is currently unknown. This paper aims to provide the first detailed analysis of these previously unreported stores of SOC. Methods Soils from five sites in the deeply weathered regolith in the Yilgarn Craton of south-western Australia were sampled and analysed for total organic carbon by combustion chromatography. These soils ranged between 5 and 38 m (mean 21 m) depth to bedrock and had been either recently reforested with Pinus pinaster or were under agriculture. Sites had a mean annual rainfall of between 399 and 583 mm yr−1. Results The mean SOC concentration across all sites was 2.30 ± 0.26 % (s.e.), 0.41 ± 0.05 % and 0.23 ± 0.04 % in the surface 0.1, 0.1–0.5 and 0.5 to 1.0 m increments, respectively. The mean value between 1 and 5 m was 0.12 ± 0.01 %, whereas between 5 and 35 m the values decreased from 0.04 ± 0.002 % to 0.03 ± 0.003 %. Mean SOC mass densities for each of the five locations varied from 21.8–37.5 kg C m−2, and were in toto two to five times greater than would be reported with sampling to a depth of 0.5 m. Conclusions This finding may have major implications for estimates of global carbon storage and modelling of the potential global impacts of climate change and land-use change on carbon cycles. The paper demonstrates the need for a reassessment of the current arbitrary shallow soil sampling depths for assessing carbon stocks, a revision of global SOC estimates and elucidation of the composition and fate of deep carbon in response to land use and climate change

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms by which coatings develop on weathered grain surfaces, and their potential impact on rates of fluid-mineral interaction, have been investigated by examining feldspars from a 1.1 ky old soil in the Glen Feshie chronosequence, Scottish highlands. Using the focused ion beam technique, electron-transparent, foils for characterization by transmission electron microscopy were cut from selected parts of grain surfaces. Some parts were bare whereas others had accumulations, a few micrometres thick, of Weathering products, often mixed with mineral and microbial debris. Feldspar exposed at bare grain surfaces is crystalline throughout and so there is no evidence for the presence of the amorphous 'leached layers' that typically form in acid-dissolution experiments and have been described from some natural Weathering contexts. The weathering products comprise sub-mu m thick crystallites of an Fe-K aluminosilicate, probably smectite, that have grown within an amorphous and probably organic-rich matrix. There is also evidence for crystallization of clays having been mediated by fungal hyphae. Coatings formed within Glen Feshie soils after similar to 1.1 ky are insufficiently continuous or impermeable to slow rates Of fluid-feldspar reactions, but provide valuable insights into the complex Weathering microenvironments oil debris and microbe-covered mineral surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineralised organic remains (including apple pips and cereal grains) collected during the ongoing excavations of Insula IX at the Roman town of Silchester, Hampshire have been analysed by a combination of SEM-EDX, powder XRD and IR spectroscopy. The experiments included mapping experiments using spatially resolved versions of each technique. IR and powder XRD mapping have been carried out utilising the synchrotron source at The Daresbury Laboratory oil stations 11.1 and 9.6. It is concluded that these samples are preserved by rapid mineralisation in the carbonate-substituted calcium phosphate mineral, dahllite. The rapid mineralisation leads to excellent preservation of the samples and a small crystal size. The value of IR spectroscopy in studying materials like this where the crystal size is small is demonstrated. A comparison is made between the excellent preservation seen in this context and the much poorer preservation of mineralised remains seen in Context 5276 or Cesspit 5251. Comments on the possible mechanism of mineralisation of these samples are made. (C) 2008 Elsevier B.V.. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complementarity in acquisition of nitrogen (N) from soil and N-2-fixation within pea and barley intercrops was studied in organic field experiments across Western Europe (Denmark, United Kingdom, France, Germany and Italy). Spring pea and barley were sown either as sole crops, at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs, in each of three cropping seasons (2003-2005). Irrespective of site and intercrop design, Land Equivalent Ratios (LER) between 1.4 at flowering and 1.3 at maturity showed that total N recovery was greater in the pea-barley intercrops than in the sole Crops Suggesting a high degree of complementarity over a wide range of growing conditions. Complementarity was partly attributed to greater soil mineral N acquisition by barley, forcing pea to rely more on N-2-fixation. At all sites the proportion of total aboveground pea N that was derived from N-2-fixation was greater when intercropped with barley than when grown as a sole crop. No consistent differences were found between the two intercropping designs. Simultaneously, the accumulation Of Phosphorous (P), potassium (K) and sulphur (S) in Danish and German experiments was 20% higher in the intercrop (P50B50) than in the respective sole crops, possibly influencing general crop yields and thereby competitive ability for other resources. Comparing all sites and seasons, the benefits of organic pea-barley intercropping for N acquisition were highly resilient. It is concluded that pea-barley intercropping is a relevant cropping strategy to adopt when trying to optimize N-2-fixation inputs to the cropping system. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain legumes are known to increase the soil mineral nitrogen (N) content, reduce the infection pressure of soil borne pathogens, and hence enhance subsequent cereals yields. Replicated field experiments were performed throughout W. Europe (Denmark, United Kingdom, France, Germany and Italy) to asses the effect of intercropping pea and barley on the N supply to subsequent wheat in organic cropping systems. Pea and barley were grown either as sole crops at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs. In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with 'extra' barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark and the United Kingdom included subsequent spring wheat with grass-clover as catch crops. The experiment was repeated over the three cropping seasons of 2003, 2004 and 2005. Irrespective of sites and intercrop design pea-barley intercropping improved the plant resource utilization (water, light, nutrients) to grain N yield with 25-30% using the Land Equivalent ratio. In terms of absolute quantities, sole cropped pea accumulated more N in the grains as compared to the additive design followed by the replacement design and then sole cropped barley. The post harvest soil mineral N content was unaffected by the preceding crops. Under the following winter wheat, the lowest mineral N content was generally found in early spring. Variation in soil mineral N content under the winter wheat between sites and seasons indicated a greater influence of regional climatic conditions and long-term cropping history than annual preceding crop and residue quality. Just as with the soil mineral N, the subsequent crop response to preceding crop was negligible. Soil N balances showed general negative values in the 2-year period, indicating depletion of N independent of preceding crop and cropping strategy. It is recommended to develop more rotational approaches to determine subsequent crop effects in organic cropping systems, since preceding crop effects, especially when including legumes, can occur over several years of cropping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineralised organic remains (including apple pips and cereal grains) collected during the ongoing excavations of Insula IX at the Roman town of Silchester, Hampshire have been analysed by a combination of SEM-EDX, powder XRD and IR spectroscopy. The experiments included mapping experiments using spatially resolved versions of each technique. IR and powder XRD mapping have been carried out utilising the synchrotron source at The Daresbury Laboratory oil stations 11.1 and 9.6. It is concluded that these samples are preserved by rapid mineralisation in the carbonate-substituted calcium phosphate mineral, dahllite. The rapid mineralisation leads to excellent preservation of the samples and a small crystal size. The value of IR spectroscopy in studying materials like this where the crystal size is small is demonstrated. A comparison is made between the excellent preservation seen in this context and the much poorer preservation of mineralised remains seen in Context 5276 or Cesspit 5251. Comments on the possible mechanism of mineralisation of these samples are made. (C) 2008 Elsevier B.V.. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the United Kingdom, as in other regions of Europe and North America, recent decreases in surface water sulphate concentrations, due to reduced sulphur emissions, have coincided with marked increases in dissolved organic carbon (DOC) concentrations. Since many of the compounds comprising DOC are acidic, the resulting increases in organic acidity may have the potential to offset the benefits of a decrease in mineral (sulphate) acidity. To test this, we used a triprotic model of organic acid dissociation to estimate the proportional organic acid buffering of reduced mineral acidity as measured in the 22 lakes and streams monitored by the UK Acid Waters Monitoring Network. For an average non-marine sulphate decrease of 30 μeq l− 1 over 15 years from 1988–2003, we estimate that around 28% was counterbalanced by rising strong organic acids, 20% by rising alkalinity (partly attributable to an increase in weak organic acids), 11% by falling inorganic aluminium and 41% by falling non-marine base cations. The situation is complicated by a concurrent decrease in marine ion concentrations, and the impact this may have had on both DOC and acidity, but results clearly demonstrate that organic acid increases have substantially limited the amount of recovery from acidification (in terms of rising alkalinity and falling aluminium) that have resulted from reducing sulphur emissions. The consistency and magnitude of sulphate and organic acid changes are consistent with a causal link between the two, possibly due to the effects of changing acidity, ionic strength and aluminium concentrations on organic matter solubility. If this is the case, then organic acids can be considered effective but partial buffers to acidity change in organic soils, and this mechanism needs to be considered in assessing and modelling recovery from acidification, and in defining realistic reference conditions. However, large spatial variations in the relative magnitude of organic acid and sulphate changes, notably for low-deposition sites in northwestern areas where organic acid increases apparently exceed non-marine sulphate decreases, suggest that additional factors, such as changes in sea-salt deposition and climatic factors, may be required to explain the full magnitude of DOC increases in UK surface waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the dissolved organic carbon (DOC) exported from catchments is transported during storm events. Accurate assessments of DOC fluxes are essential to understand long-term trends in the transport of DOC from terrestrial to aquatic systems, and also the loss of carbon from peatlands to determine changes in the source/sink status of peatland carbon stores. However, many long-term monitoring programmes collect water samples at a frequency (e.g. weekly/monthly) less than the time period of a typical storm event (typically <1–2 days). As widespread observations in catchments dominated by organo-mineral soils have shown that both concentration and flux of DOC increases during storm events, lower frequency monitoring could result in substantial underestimation of DOC flux as the most dynamic periods of transport are missed. However, our intensive monitoring study in a UK upland peatland catchment showed a contrasting response to these previous studies. Our results showed that (i) DOC concentrations decreased during autumn storm events and showed a poor relationship with flow during other seasons; and that (ii) this decrease in concentrations during autumn storms caused DOC flux estimates based on weekly monitoring data to be over-estimated, rather than under-estimated, because of over rather than under estimation of the flow-weighted mean concentration used in flux calculations. However, as DOC flux is ultimately controlled by discharge volume, and therefore rainfall, and the magnitude of change in discharge was greater than the magnitude of decline in concentrations, DOC flux increased during individual storm events. The implications for long-term DOC trends are therefore contradictory, as increased rainfall could increase flux but cause an overall decrease in DOC concentrations from peatland streams. Care needs to be taken when interpreting long-term trends in DOC flux rather than concentration; as flux is calculated from discharge estimates, and discharge is controlled by rainfall, DOC flux and rainfall/discharge will always be well correlated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nineteen wheat cultivars, released from 1934 to 2000, were grown at two organic and two non-organic sites in each of 3 years. Assessments included grain yield, grain protein concentration, protein yield, disease incidence and green leaf area. The superiority of each cultivar (the sum of the squares of the differences between its mean in each environment and the mean of the best cultivar there, divided by twice the number of environments; CS) was calculated for yield, grain protein concentration and protein yield, and ranked in each environment. The yield and grain protein concentration CS were more closely correlated with cultivar release date at the non-organic sites than at organic sites. This difference may be attributed to higher yield levels with larger differences among cultivars at the non-organic sites, rather than to improved stability (i.e. similar ranks) across sites. The significant difference in the correlation of protein yield CS and cultivar age between organic and non-organic sites would support evidence that the ability to take up mineral nitrogen (N) compared to soil N has been a component of the selection conditions of more modern cultivars (released after 1989). This is supported by assessment of green leaf area (GLA), where more modern cultivars in the non-organic systems had greater late-season GLA, a trend that was not identified in organic conditions. This effect could explain the poor correlation between age and protein yield CS in organic compared to non-organic conditions where modern cultivars are selected to benefit from later nitrogen (N) availability which includes the spring nitrogen applications tailored to coincide with peak crop demand. Under organic management, N release is largely based on the breakdown of fertility-building crops incorporated (ploughed-in) in the previous autumn. The release of nutrients from these residues is dependent on the soil conditions, which includes temperature and microbial populations, in addition to the potential leaching effect of high winter rainfall in the UK. In organic cereal crops, early resource capture is a major advantage for maximizing the utilization of nutrients from residue breakdown. It is concluded that selection of cultivars under conditions of high agrochemical inputs selects for cultivars that yield well under maximal conditions in terms of nutrient availability and pest, disease and weed control. The selection conditions for breeding have a tendency to select cultivars which perform relatively better in non-organic compared to organic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term monitoring data from eastern North America and Europe indicate a link between increased dissolved organic carbon (DOC) concentrations in surface waters over the last two decades and decreased atmospheric pollutant and marine sulphur (S) deposition. The hypothesis is that decreased acidity and ionic strength associated with declining S deposition has increased the solubility of DOC. However, the sign and magnitude of DOC trends have varied between sites, and in some cases at sites where S deposition has declined, no significant increase in DOC has been observed, creating uncertainty about the causal mechanisms driving the observed trends. In this paper, we demonstrate chemical regulation of DOC release from organic soils in batch experiments caused by changes in acidity and conductivity (measured as a proxy for ionic strength) associated with controlled SO42− additions. DOC release from the top 10 cm of the O-horizon of organo-mineral soils and peats decreased by 21–60% in response to additions of 0–437 µeq SO42− l−1 sulphuric acid (H2SO4) and neutral sea-salt solutions (containing Na+, Mg2+, Cl−, SO42−) over a 20-hour extraction period. A significant decrease in the proportion of the acid-sensitive coloured aromatic humic acids (measured by specific ultra-violet absorbance (SUVA) at 254 nm) was also found with increasing acidity (P < 0.05) in most, but not all, soils, confirming that DOC quality, as well as quantity, changed with SO42− additions. DOC release appeared to be more sensitive to increased acidity than to increased conductivity. By comparing the change in DOC release with bulk soil properties, we found that DOC release from the O-horizon of organo-mineral soils and semi-confined peats, which contained greater exchangeable aluminium (Al) and had lower base saturation (BS), were more sensitive to SO42− additions than DOC release from blanket peats with low concentrations of exchangeable Al and greater BS. Therefore, variation in soil type and acid/base status between sites may partly explain the difference in the magnitude of DOC changes seen at different sites where declines in S deposition have been similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial variability of soil nitrogen (N) mineralisation has not been extensively studied, which limits our capacity to make N fertiliser recommendations. Even less attention has been paid to the scale-dependence of the variation. The objective of this research was to investigate the scale-dependence of variation of mineral N (MinN, N–NO3− plus N–NH4+) at within-field scales. The study was based on the spatial dependence of the labile fractions of SOM, the key fractions for N mineralisation. Soils were sampled in an unbalanced nested design in a 4-ha arable field to examine the distribution of the variation of SOM at 30, 10, 1, and 0.12 m. Organic matter in free and intra-aggregate light fractions (FLF and IALF) was extracted by physical fractionation. The variation occurred entirely within 0.12 m for FLF and at 10 m for IALF. A subsequent sampling on a 5-m grid was undertaken to link the status of the SOM fractions to MinN, which showed uncorrelated spatial dependence. A uniform application of N fertiliser would be suitable in this case. The failure of SOM fractions to identify any spatial dependence of MinN suggests that other soil variables, or crop indicators, should be tested to see if they can identify different N supply areas within the field for a more efficient and environmentally friendly N management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) concentrations in surface waters have increased across much of Europe and North America, with implications for the terrestrial carbon balance, aquatic ecosystem functioning, water treatment costs and human health. Over the past decade, many hypotheses have been put forward to explain this phenomenon, from changing climate and land-management to eutrophication and acid deposition. Resolution of this debate has been hindered by a reliance on correlative analyses of time-series data, and a lack of robust experimental testing of proposed mechanisms. In a four-year, four-site replicated field experiment involving both acidifying and de-acidifying treatments, we tested the hypothesis that DOC leaching was previously suppressed by high levels of soil acidity in peat and organo-mineral soils, and therefore that observed DOC increases a consequence of decreasing soil acidity. We observed a consistent, positive relationship between DOC and acidity change at all sites. Responses were described by similar hyperbolic relationships between standardised changes in DOC and hydrogen ion concentrations at all sites, suggesting potentially general applicability. These relationships explained a substantial proportion of observed changes in peak DOC concentrations in nearby monitoring streams, and application to a UK-wide upland soil pH dataset suggests that recovery from acidification alone could have led to soil solution DOC increases in the range 46-126% by habitat type since 1978. Our findings raise the possibility that changing soil acidity may have wider impacts on ecosystem carbon balances. Decreasing sulphur deposition may be accelerating terrestrial carbon loss, and returning surface waters to a natural, high-DOC condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) in acid-sensitive upland waters is dominated by allochthonous inputs from organic-rich soils, yet inter-site variability in soil DOC release to changes in acidity has received scant attention in spite of the reported differences between locations in surface water DOC trends over the last few decades. In a previous paper, we demonstrated that pH-related retention of DOC in O horizon soils was influenced by acid-base status, particularly the exchangeable Al content. In the present paper, we investigate the effect of sulphate additions (0–437 μeq l−1) on DOC release in the mineral B horizon soils from the same locations. Dissolved organic carbon release decreased with declining pH in all soils, although the shape of the pH-DOC relationships differed between locations, reflecting the multiple factors controlling DOC mobility. The release of DOC decreased by 32–91% in the treatment with the largest acid input (437 μeq l−1), with the greatest decreases occurring in soils with very small % base saturation (BS, <3%) and/or large capacity for sulphate (SO42−) retention (up to 35% of added SO42−). The greatest DOC release occurred in the soil with the largest initial base status (12% BS). These results support our earlier conclusions that differences in acid-base status between soils alter the sensitivity of DOC release to similar sulphur deposition declines. However,superimposed on this is the capacity of mineral soils to sorb DOC and SO42−, and more work is needed to determine the fate of sorbed DOC under conditions of increasing pH and decreasing SO42−.