23 resultados para Optimal reactive dispatch problem
em CentAUR: Central Archive University of Reading - UK
Resumo:
Optimal state estimation is a method that requires minimising a weighted, nonlinear, least-squares objective function in order to obtain the best estimate of the current state of a dynamical system. Often the minimisation is non-trivial due to the large scale of the problem, the relative sparsity of the observations and the nonlinearity of the objective function. To simplify the problem the solution is often found via a sequence of linearised objective functions. The condition number of the Hessian of the linearised problem is an important indicator of the convergence rate of the minimisation and the expected accuracy of the solution. In the standard formulation the convergence is slow, indicating an ill-conditioned objective function. A transformation to different variables is often used to ameliorate the conditioning of the Hessian by changing, or preconditioning, the Hessian. There is only sparse information in the literature for describing the causes of ill-conditioning of the optimal state estimation problem and explaining the effect of preconditioning on the condition number. This paper derives descriptive theoretical bounds on the condition number of both the unpreconditioned and preconditioned system in order to better understand the conditioning of the problem. We use these bounds to explain why the standard objective function is often ill-conditioned and why a standard preconditioning reduces the condition number. We also use the bounds on the preconditioned Hessian to understand the main factors that affect the conditioning of the system. We illustrate the results with simple numerical experiments.
Resumo:
This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.
Resumo:
In this paper, a discrete time dynamic integrated system optimisation and parameter estimation algorithm is applied to the solution of the nonlinear tracking optimal control problem. A version of the algorithm with a linear-quadratic model-based problem is developed and implemented in software. The algorithm implemented is tested with simulation examples.
Resumo:
A new heuristic for the Steiner Minimal Tree problem is presented here. The method described is based on the detection of particular sets of nodes in networks, the “Hot Spot” sets, which are used to obtain better approximations of the optimal solutions. An algorithm is also proposed which is capable of improving the solutions obtained by classical heuristics, by means of a stirring process of the nodes in solution trees. Classical heuristics and an enumerative method are used CIS comparison terms in the experimental analysis which demonstrates the goodness of the heuristic discussed in this paper.
Resumo:
A new heuristic for the Steiner minimal tree problem is presented. The method described is based on the detection of particular sets of nodes in networks, the “hot spot” sets, which are used to obtain better approximations of the optimal solutions. An algorithm is also proposed which is capable of improving the solutions obtained by classical heuristics, by means of a stirring process of the nodes in solution trees. Classical heuristics and an enumerative method are used as comparison terms in the experimental analysis which demonstrates the capability of the heuristic discussed
Resumo:
1. The production of food for human consumption has led to an historical and global conflict with terrestrial carnivores, which in turn has resulted in the extinction or extirpation of many species, although some have benefited. At present, carnivores affect food production by: (i) killing human producers; killing and/or eating (ii) fish/shellfish; (iii) game/wildfowl; (iv) livestock; (v) damaging crops; (vi) transmitting diseases; and (vii) through trophic interactions with other species in agricultural landscapes. Conversely, carnivores can themselves be a source of dietary protein (bushmeat). 2. Globally, the major areas of conflict are predation on livestock and the transmission of rabies. At a broad scale, livestock predation is a customary problem where predators are present and has been quantified for a broad range of carnivore species, although the veracity of these estimates is equivocal. Typically, but not always, losses are small relative to the numbers held, but can be a significant proportion of total livestock mortality. Losses experienced by producers are often highly variable, indicating that factors such as husbandry practices and predator behaviour may significantly affect the relative vulnerability of properties in the wider landscape. Within livestock herds, juvenile animals are particularly vulnerable. 3. Proactive and reactive culling are widely practised as a means to limit predation on livestock and game. Historic changes in species' distributions and abundance illustrate that culling programmes can be very effective at reducing predator density, although such substantive impacts are generally considered undesirable for native predators. However, despite their prevalence, the effectiveness, efficiency and the benefit:cost ratio of culling programmes have been poorly studied. 4. A wide range of non-lethal methods to limit predation has been studied. However, many of these have their practical limitations and are unlikely to be widely applicable. 5. Lethal approaches are likely to dominate the management of terrestrial carnivores for the foreseeable future, but animal welfare considerations are increasingly likely to influence management strategies. The adoption of non-lethal approaches will depend upon proof of their effectiveness and the willingness of stakeholders to implement them, and, in some cases, appropriate licensing and legislation. 6. Overall, it is apparent that we still understand relatively little about the importance of factors affecting predation on livestock and how to manage this conflict effectively. We consider the following avenues of research to be essential: (i) quantified assessments of the loss of viable livestock; (ii) landscape-level studies of contiguous properties to quantify losses associated with variables such as different husbandry practices; (iii) replicated experimental manipulations to identify the relative benefit of particular management practices, incorporating (iv) techniques to identify individual predators killing stock; and (v) economic analyses of different management approaches to quantify optimal production strategies.
Resumo:
We describe, and make publicly available, two problem instance generators for a multiobjective version of the well-known quadratic assignment problem (QAP). The generators allow a number of instance parameters to be set, including those controlling epistasis and inter-objective correlations. Based on these generators, several initial test suites are provided and described. For each test instance we measure some global properties and, for the smallest ones, make some initial observations of the Pareto optimal sets/fronts. Our purpose in providing these tools is to facilitate the ongoing study of problem structure in multiobjective (combinatorial) optimization, and its effects on search landscape and algorithm performance.
Resumo:
Exact error estimates for evaluating multi-dimensional integrals are considered. An estimate is called exact if the rates of convergence for the low- and upper-bound estimate coincide. The algorithm with such an exact rate is called optimal. Such an algorithm has an unimprovable rate of convergence. The problem of existing exact estimates and optimal algorithms is discussed for some functional spaces that define the regularity of the integrand. Important for practical computations data classes are considered: classes of functions with bounded derivatives and Holder type conditions. The aim of the paper is to analyze the performance of two optimal classes of algorithms: deterministic and randomized for computing multidimensional integrals. It is also shown how the smoothness of the integrand can be exploited to construct better randomized algorithms.
Resumo:
This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a 3-D space. A Lie group formulation arises naturally and the vehicles are modeled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically, the 3-D space forms Euclidean space E-3, the sphere S-3, and the hyperboloid H'. The corresponding frame bundles are equal to the Euclidean group of motions SE(3), the rotation group SO(4), and the Lorentz group SO (1, 3). The maximum principle of optimal control shifts the emphasis for these systems to the associated Hamiltonian formalism. For an integrable case, the extremal curves are explicitly expressed in terms of elliptic functions. In this paper, a study at the singularities of the extremal curves are given, which correspond to critical points of these elliptic functions. The extremal curves are characterized as the intersections of invariant surfaces and are illustrated graphically at the singular points. It. is then shown that the projections, of the extremals onto the base space, called elastica, at these singular points, are curves of constant curvature and torsion, which in turn implies that the oriented vehicles trace helices.
Resumo:
A polynomial-based ARMA model, when posed in a state-space framework can be regarded in many different ways. In this paper two particular state-space forms of the ARMA model are considered, and although both are canonical in structure they differ in respect of the mode in which disturbances are fed into the state and output equations. For both forms a solution is found to the optimal discrete-time observer problem and algebraic connections between the two optimal observers are shown. The purpose of the paper is to highlight the fact that the optimal observer obtained from the first state-space form, commonly known as the innovations form, is not that employed in an optimal controller, in the minimum-output variance sense, whereas the optimal observer obtained from the second form is. Hence the second form is a much more appropriate state-space description to use for controller design, particularly when employed in self-tuning control schemes.
Resumo:
A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimisation and Parameter Estimation (DISOPE) which has been designed to achieve the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A method based on Broyden's ideas is used for approximating some derivative trajectories required. Ways for handling con straints on both manipulated and state variables are described. Further, a method for coping with batch-to- batch dynamic variations in the process, which are common in practice, is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch processes. The algorithm is success fully applied to a benchmark problem consisting of the input profile optimisation of a fed-batch fermentation process.
Resumo:
A technique is derived for solving a non-linear optimal control problem by iterating on a sequence of simplified problems in linear quadratic form. The technique is designed to achieve the correct solution of the original non-linear optimal control problem in spite of these simplifications. A mixed approach with a discrete performance index and continuous state variable system description is used as the basis of the design, and it is shown how the global problem can be decomposed into local sub-system problems and a co-ordinator within a hierarchical framework. An analysis of the optimality and convergence properties of the algorithm is presented and the effectiveness of the technique is demonstrated using a simulation example with a non-separable performance index.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.