5 resultados para Optimal experimental desgin

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modelling of a nonlinear stochastic dynamical processes from data involves solving the problems of data gathering, preprocessing, model architecture selection, learning or adaptation, parametric evaluation and model validation. For a given model architecture such as associative memory networks, a common problem in non-linear modelling is the problem of "the curse of dimensionality". A series of complementary data based constructive identification schemes, mainly based on but not limited to an operating point dependent fuzzy models, are introduced in this paper with the aim to overcome the curse of dimensionality. These include (i) a mixture of experts algorithm based on a forward constrained regression algorithm; (ii) an inherent parsimonious delaunay input space partition based piecewise local lineal modelling concept; (iii) a neurofuzzy model constructive approach based on forward orthogonal least squares and optimal experimental design and finally (iv) the neurofuzzy model construction algorithm based on basis functions that are Bézier Bernstein polynomial functions and the additive decomposition. Illustrative examples demonstrate their applicability, showing that the final major hurdle in data based modelling has almost been removed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frequency responses of two 50 Hz and one 400 Hz induction machines have been measured experimentally over a frequency range of 1 kHz to 400 kHz. This study has shown that the stator impedances of the machines behave in a similar manner to a parallel resonant circuit, and hence have a resonant point at which the Input impedance of the machine is at a maximum. This maximum impedance point was found experimentally to be as low as 33 kHz, which is well within the switching frequency ranges of modern inverter drives. This paper investigates the possibility of exploiting the maximum impedance point of the machine, by taking it into consideration when designing an inverter, in order to minimize ripple currents due to the switching frequency. Minimization of the ripple currents would reduce torque pulsation and losses, increasing overall performance. A modified machine model was developed to take into account the resonant point, and this model was then simulated with an inverter to demonstrate the possible advantages of matching the inverter switching frequency to the resonant point. Finally, in order to experimentally verify the simulated results, a real inverter with a variable switching frequency was used to drive an induction machine. Experimental results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetic studies on the AR (aldose reductase) protein have shown that it does not behave as a classical enzyme in relation to ring aldose sugars. As with non-enzymatic glycation reactions, there is probably a free radical element involved derived from monosaccharide autoxidation. in the case of AR, there is free radical oxidation of NADPH by autoxidizing monosaccharides, which is enhanced in the presence of the NADPH-binding protein. Thus any assay for AR based on the oxidation of NADPH in the presence of autoxidizing monosaccharides is invalid, and tissue AR measurements based on this method are also invalid, and should be reassessed. AR exhibits broad specificity for both hydrophilic and hydrophobic aldehydes that suggests that the protein may be involved in detoxification. The last thing we would want to do is to inhibit it. ARIs (AR inhibitors) have a number of actions in the cell which are not specific, and which do not involve them binding to AR. These include peroxy-radical scavenging and effects of metal ion chelation. The AR/ARI story emphasizes the importance of correct experimental design in all biocatalytic experiments. Developing the use of Bayesian utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has led to the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-m and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimizes the error in the parameters estimated, and is suitable for simple or complex steady-state models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In areas such as drug development, clinical diagnosis and biotechnology research, acquiring details about the kinetic parameters of enzymes is crucial. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. We demonstrate that a Bayesian approach (the use of prior knowledge) can produce major gains quantifiable in terms of information, productivity and accuracy of each experiment. Developing the use of Bayesian Utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has enabled the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-M and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data from three cocoa (Theobroma cacao) clonal selection trials are used to investigate the genetic and environmental components of variation in yield and the percentage of total pods affected by black pod disease (Phytophtora pod rot). Simulations based on these estimated components of variation are then used to discuss the best choice in future of numbers of clones, replicates and years of harvest to maximise selection advances in the traits measured. The three main conclusions are the need to increase the number of clones at the expense of the number of replicates of each clone, the diminishing returns from additional years of harvesting and the importance of widening the genetic base of the clones chosen to be tested.