3 resultados para Optical surfaces

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical thin films are coatings of amorphous, crystalline or polymerized materials, in single or multiple layers, on surfaces of optical components such as lenses and mirrors. These thin film coatings are used in optics to reduce reflections from optical parts (antireflection coatings) or to provide highly reflective surfaces (dielectric mirrors), as well as to protect components against abrasion and ambient moisture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulsed terahertz imaging is being developed as a technique to image obscured mural paintings. Due to significant advances in terahertz technology, portable systems are now capable of operating in unregulated environments and this has prompted their use on archaeological excavations. August 2011 saw the first use of pulsed terahertz imaging at the archaeological site of Çatalhöyük, Turkey, where mural paintings dating from the Neolithic period are continuously being uncovered by archaeologists. In these particular paintings the paint is applied onto an uneven surface, and then covered by an equally uneven surface. Traditional terahertz data analysis has proven unsuccessful at sub-surface imaging of these paintings due to the effect of these uneven surfaces. For the first time, an image processing technique is presented, based around Gaussian beam-mode coupling, which enables the visualization of the obscured painting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been developed to estimate aerosol optical depth (AOD) over land surfaces using high spatial resolution, hyperspectral, and multiangle Compact High Resolution Imaging Spectrometer (CHRIS)/Project for On Board Autonomy (PROBA) images. The CHRIS instrument is mounted aboard the PROBA satellite and provides up to 62 bands. The PROBA satellite allows pointing to obtain imagery from five different view angles within a short time interval. The method uses inversion of a coupled surface/atmosphere radiative transfer model and includes a general physical model of angular surface reflectance. An iterative process is used to determine the optimum value providing the best fit of the corrected reflectance values for a number of view angles and wavelengths with those provided by the physical model. This method has previously been demonstrated on data from the Advanced Along-Track Scanning Radiometer and is extended here to the spectral and angular sampling of CHRIS/PROBA. The values obtained from these observations are validated using ground-based sun-photometer measurements. Results from 22 image sets show an rms error of 0.11 in AOD at 550 nm, which is reduced to 0.06 after an automatic screening procedure.