3 resultados para Operational Art

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Under the Public Bodies Bill 2010, the HFEA, cornerstone in the regulation of assisted reproduction technologies (ART) for the last twenty years, is due to be abolished. This implies that there is no longer a need for a dedicated regulator for ART and that the existing roles of the Authority as both operational compliance monitor, and instance of ethical evaluation, may be absorbed by existing healthcare regulators. This article presents a timely analysis of these disparate functions of the HFEA, charting reforms adopted in 2008 and assessing the impact of the current proposals. Taking assisted conception treatment as the focus activity, it will be shown that the last few years have seen a concentration on the HFEA as a technical regulator based upon the principles of Better Regulation, with little analysis of how the ethical responsibility of the Authority fits into this framework. The current proposal to abolish the HFEA continues to fail to address this crucial question. Notwithstanding the fact that the scope of the Authority's ethical role may be questioned, its abolition requires that the Government consider what alternatives exists - or need to be put in place - to provide both responsive operational regulation and a forum for ethical reflection and decision-making in an area which continues to pose regulatory challenges

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although ensemble prediction systems (EPS) are increasingly promoted as the scientific state-of-the-art for operational flood forecasting, the communication, perception, and use of the resulting alerts have received much less attention. Using a variety of qualitative research methods, including direct user feedback at training workshops, participant observation during site visits to 25 forecasting centres across Europe, and in-depth interviews with 69 forecasters, civil protection officials, and policy makers involved in operational flood risk management in 17 European countries, this article discusses the perception, communication, and use of European Flood Alert System (EFAS) alerts in operational flood management. In particular, this article describes how the design of EFAS alerts has evolved in response to user feedback and desires for a hydrographic-like way of visualizing EFAS outputs. It also documents a variety of forecaster perceptions about the value and skill of EFAS forecasts and the best way of using them to inform operational decision making. EFAS flood alerts were generally welcomed by flood forecasters as a sort of ‘pre-alert’ to spur greater internal vigilance. In most cases, however, they did not lead, by themselves, to further preparatory action or to earlier warnings to the public or emergency services. Their hesitancy to act in response to medium-term, probabilistic alerts highlights some wider institutional obstacles to the hopes in the research community that EPS will be readily embraced by operational forecasters and lead to immediate improvements in flood incident management. The EFAS experience offers lessons for other hydrological services seeking to implement EPS operationally for flood forecasting and warning. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While state-of-the-art models of Earth's climate system have improved tremendously over the last 20 years, nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system realistically. Contrasting the skill of these models not only with each other but also with empirical models can reveal the space and time scales on which simulation models exploit their physical basis effectively and quantify their ability to add information to operational forecasts. The skill of decadal probabilistic hindcasts for annual global-mean and regional-mean temperatures from the EU Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project is contrasted with several empirical models. Both the ENSEMBLES models and a “dynamic climatology” empirical model show probabilistic skill above that of a static climatology for global-mean temperature. The dynamic climatology model, however, often outperforms the ENSEMBLES models. The fact that empirical models display skill similar to that of today's state-of-the-art simulation models suggests that empirical forecasts can improve decadal forecasts for climate services, just as in weather, medium-range, and seasonal forecasting. It is suggested that the direct comparison of simulation models with empirical models becomes a regular component of large model forecast evaluations. Doing so would clarify the extent to which state-of-the-art simulation models provide information beyond that available from simpler empirical models and clarify current limitations in using simulation forecasting for decision support. Ultimately, the skill of simulation models based on physical principles is expected to surpass that of empirical models in a changing climate; their direct comparison provides information on progress toward that goal, which is not available in model–model intercomparisons.