105 resultados para Oldfield, Jonatan D.: Russian nature: exploring the environmental consequences of societal change
em CentAUR: Central Archive University of Reading - UK
Resumo:
Agri-environment schemes (AESs) have been implemented across EU member states in an attempt to reconcile agricultural production methods with protection of the environment and maintenance of the countryside. To determine the extent to which such policy objectives are being fulfilled, participating countries are obliged to monitor and evaluate the environmental, agricultural and socio-economic impacts of their AESs. However, few evaluations measure precise environmental outcomes and critically, there are no agreed methodologies to evaluate the benefits of particular agri-environmental measures, or to track the environmental consequences of changing agricultural practices. In response to these issues, the Agri-Environmental Footprint project developed a common methodology for assessing the environmental impact of European AES. The Agri-Environmental Footprint Index (AFI) is a farm-level, adaptable methodology that aggregates measurements of agri-environmental indicators based on Multi-Criteria Analysis (MCA) techniques. The method was developed specifically to allow assessment of differences in the environmental performance of farms according to participation in agri-environment schemes. The AFI methodology is constructed so that high values represent good environmental performance. This paper explores the use of the AFI methodology in combination with Farm Business Survey data collected in England for the Farm Accountancy Data Network (FADN), to test whether its use could be extended for the routine surveillance of environmental performance of farming systems using established data sources. Overall, the aim was to measure the environmental impact of three different types of agriculture (arable, lowland livestock and upland livestock) in England and to identify differences in AFI due to participation in agri-environment schemes. However, because farm size, farmer age, level of education and region are also likely to influence the environmental performance of a holding, these factors were also considered. Application of the methodology revealed that only arable holdings participating in agri-environment schemes had a greater environmental performance, although responses differed between regions. Of the other explanatory variables explored, the key factors determining the environmental performance for lowland livestock holdings were farm size, farmer age and level of education. In contrast, the AFI value of upland livestock holdings differed only between regions. The paper demonstrates that the AFI methodology can be used readily with English FADN data and therefore has the potential to be applied more widely to similar data sources routinely collected across the EU-27 in a standardised manner.
Resumo:
The fungus Gaeumannomyces graminis var. tritici (Ggt), commonly known as the take-all fungus, causes damage to roots of wheat and barley that limits crop growth and causes loss of yield. There was little knowledge on the within-field spatial variation of take-all and relations with features in the growing crop, selected soil properties and spectral information from remotely sensed imagery. Geostatistical analyses showed that take-all, chlorosis and leaf area index had similar patchy distributions. Many of the spectral bands from a hyperspectral image also had similar spatial patterns to take-all and chlorosis. Relations between take-all and mineral nitrogen, elevation and pH were generally weaker.
Resumo:
We explicitly tested for the first time the ‘environmental specificity’ of traditional 16S rRNAtargeted fluorescence in situ hybridization (FISH) through comparison of the bacterial diversity actually targeted in the environment with the diversity that should be exactly targeted (i.e. without mismatches) according to in silico analysis. To do this, we exploited advances in modern Flow Cytometry that enabled improved detection and therefore sorting of sub-micron-sized particles and used probe PSE1284 (designed to target Pseudomonads) applied to Lolium perenne rhizosphere soil as our test system. The 6-carboxyfluorescein (6-FAM)-PSE1284-hybridised population, defined as displaying enhanced green fluorescence in Flow Cytometry, represented 3.51±1.28% of the total detected population when corrected using a nonsense (NON-EUB338) probe control. Analysis of 16S rRNA gene libraries constructed from Fluorescence Activated Cell Sorted (FACS) -recovered fluorescent populations (n=3), revealed that 98.5% (Pseudomonas spp. comprised 68.7% and Burkholderia spp. 29.8%) of the total sorted population was specifically targeted as evidenced by the homology of the 16S rRNA sequences to the probe sequence. In silico evaluation of probe PSE1284 with the use of RDP-10 probeMatch justified the existence of Burkholderia spp. among the sorted cells. The lack of novelty in Pseudomonas spp. sequences uncovered was notable, probably reflecting the well-studied nature of this functionally important genus. To judge the diversity recorded within the FACS-sorted population, rarefaction and DGGE analysis were used to evaluate, respectively, the proportion of Pseudomonas diversity uncovered by the sequencing effort and the representativeness of the Nycodenz® method for the extraction of bacterial cells from soil.
Resumo:
Local food initiatives create a niche market in many developed countries where consumer choice is being met with an expanding offering in both conventional as well as complementary retail outlets. Supermarkets in conjunction with the food service sector currently dominate food sales and consumption, and are likely to do so for the foreseeable future. However, the local food sector offers an opportunity for implementing niche marketing strategies for many businesses. Local food activities tend to be relatively independent activities and a clearer definition for “local” food would assist in consolidating this important component of the food system. Related to this, consumers would benefit from the establishment of some form of assurance system for the ‘localness’ of food. In the UK, with its well established local food market, farmers’ markets, farm shops and box schemes are currently having the largest impact in terms of total sales. Hence further research is required to confirm that support for similar business ventures in Australia would be a viable strategy for strengthening its local food systems.
Resumo:
In this contribution, we continue our exploration of the factors defining the Mesozoic climatic history. We improve the Earth system model GEOCLIM designed for long term climate and geochemical reconstructions by adding the explicit calculation of the biome dynamics using the LPJ model. The coupled GEOCLIM-LPJ model thus allows the simultaneous calculation of the climate with a 2-D spatial resolution, the coeval atmospheric CO2, and the continental biome distribution. We found that accounting for the climatic role of the continental vegetation dynamics (albedo change, water cycle and surface roughness modulations) strongly affects the reconstructed geological climate. Indeed the calculated partial pressure of atmospheric CO2 over the Mesozoic is twice the value calculated when assuming a uniform constant vegetation. This increase in CO2 is triggered by a global cooling of the continents, itself triggered by a general increase in continental albedo owing to the development of desertic surfaces. This cooling reduces the CO2 consumption through silicate weathering, and hence results in a compensating increase in the atmospheric CO2 pressure. This study demonstrates that the impact of land plants on climate and hence on atmospheric CO2 is as important as their geochemical effect through the enhancement of chemical weathering of the continental surface. Our GEOCLIM-LPJ simulations also define a climatic baseline for the Mesozoic, around which exceptionally cool and warm events can be identified.
Resumo:
The concept of resilience has emerged out of a complex literature that has sought to make sense of an increasingly interconnected world that appears ever more beset by crises. Resilience’s appeal is reflected by the burgeoning mass of literature that has appeared on the subject in the past five years. However, there is ongoing debate surrounding its usage, with some commentators claiming that the term is inherently too conservative a one to be usefully applied to situations of vulnerability in which more radical social change is required. This article extends existing efforts to formulate more transformative notions of resilience by reframing it as a double-edged outcome of the pre-reflective and critical ways in which actors draw upon their internal structures following the occurrence of a negative event, thus reproducing or changing the external structural context that gave rise to the event in the first place. By employing a structuration-inspired analysis to the study of small-scale farmer responses to a flood-induced resettlement programme in central Mozambique, the article presents a systematic approach to the examination of resilience in light of this reframing. The case study findings suggest that more attention should be paid to the facilitative, as well as constraining, nature of structures if vulnerable populations are to be assisted in their efforts to exert transformative capacity over the wider conditions that give rise to their difficulties.
Resumo:
The archaeological site of Kharaneh IV in Jordan's Azraq Basin, and its relatively near neighbour Jilat 6 show evidence of sustained occupation of substantial size through the Early to Middle Epipalaeolithic (c. 24,000 - 15,000 cal BP). Here we review the geomorphological evidence for the environmental setting in which Kharaneh IV was established. The on-site stratigraphy is clearly differentiated from surrounding sediments, marked visually as well as by higher magnetic susceptibility values. Dating and analysis of off-site sediments show that a significant wetland existed at the site prior to and during early site occupation (~ 23,000 - 19,000 BP). This may explain why such a substantial site existed at this location. This wetland dating to the Last Glacial Maximum also provides important information on the palaeoenvironments and potential palaeoclimatic scenarios for today's eastern Jordanian desert, from where such evidence is scarce.
Resumo:
Abstract: A new methodology was created to measure the energy consumption and related green house gas (GHG) emissions of a computer operating system (OS) across different device platforms. The methodology involved the direct power measurement of devices under different activity states. In order to include all aspects of an OS, the methodology included measurements in various OS modes, whilst uniquely, also incorporating measurements when running an array of defined software activities, so as to include OS application management features. The methodology was demonstrated on a laptop and phone that could each run multiple OSs, results confirmed that OS can significantly impact the energy consumption of devices. In particular, the new versions of the Microsoft Windows OS were tested and highlighted significant differences between the OS versions on the same hardware. The developed methodology could enable a greater awareness of energy consumption, during both the software development and software marketing processes.
Resumo:
The paper presents the methods and results of a life-cycle assessment (LCA) applied to the production of maize grain from a conventional variety compared with maize grain from a variety genetically modified to be herbicide tolerant and insect protected and to contain an enhanced oil and lysine content, and its impact when fed to broiler chickens. The findings show that there are both environmental and human health benefits of growing GM maize including lower impacts on global warming, ozone depletion, freshwater ecotoxicity and human toxicity. However, when considered in terms of the use of maize as a feed input to broiler chicken production, the benefits of the GM alternative become negligible compared to the use of conventional maize.
Resumo:
Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution.
A hierarchical Bayesian model for predicting the functional consequences of amino-acid polymorphisms
Resumo:
Genetic polymorphisms in deoxyribonucleic acid coding regions may have a phenotypic effect on the carrier, e.g. by influencing susceptibility to disease. Detection of deleterious mutations via association studies is hampered by the large number of candidate sites; therefore methods are needed to narrow down the search to the most promising sites. For this, a possible approach is to use structural and sequence-based information of the encoded protein to predict whether a mutation at a particular site is likely to disrupt the functionality of the protein itself. We propose a hierarchical Bayesian multivariate adaptive regression spline (BMARS) model for supervised learning in this context and assess its predictive performance by using data from mutagenesis experiments on lac repressor and lysozyme proteins. In these experiments, about 12 amino-acid substitutions were performed at each native amino-acid position and the effect on protein functionality was assessed. The training data thus consist of repeated observations at each position, which the hierarchical framework is needed to account for. The model is trained on the lac repressor data and tested on the lysozyme mutations and vice versa. In particular, we show that the hierarchical BMARS model, by allowing for the clustered nature of the data, yields lower out-of-sample misclassification rates compared with both a BMARS and a frequen-tist MARS model, a support vector machine classifier and an optimally pruned classification tree.
Resumo:
The release of genetically modified plants is governed by regulations that aim to provide an assessment of potential impact on the environment. One of the most important components of this risk assessment is an evaluation of the probability of gene flow. In this review, we provide an overview of the current literature on gene flow from transgenic plants, providing a framework of issues for those considering the release of a transgenic plant into the environment. For some plants gene flow from transgenic crops is well documented, and this information is discussed in detail in this review. Mechanisms of gene flow vary from plant species to plant species and range from the possibility of asexual propagation, short- or long-distance pollen dispersal mediated by insects or wind and seed dispersal. Volunteer populations of transgenic plants may occur where seed is inadvertently spread during harvest or commercial distribution. If there are wild populations related to the transgenic crop then hybridization and eventually introgression in the wild may occur, as it has for herbicide resistant transgenic oilseed rape (Brassica napus). Tools to measure the amount of gene flow, experimental data measuring the distance of pollen dispersal, and experiments measuring hybridization and seed survivability are discussed in this review. The various methods that have been proposed to prevent gene flow from genetically modified plants are also described. The current "transgenic traits'! in the major crops confer resistance to herbicides and certain insects. Such traits could confer a selective advantage (an increase in fitness) in wild plant populations in some circumstances, were gene flow to occur. However, there is ample evidence that gene flow from crops to related wild species occurred before the development of transgenic crops and this should be taken into account in the risk assessment process.