2 resultados para Ocular Growth
em CentAUR: Central Archive University of Reading - UK
Resumo:
We have investigated the use of a laminin coated compressed collagen gel containing corneal fibroblasts (keratocytes) as a novel scaffold to support the growth of corneal limbal epithelial stem cells. The growth of limbal epithelial cells was compared between compressed collagen gel and a clinically proven conventional substrate, denuded amniotic membrane. Following compression of the collagen gel, encapsulated keratocytes remained viable and scanning electron microscopy showed that fibres within the compressed gel were dense, homogeneous and similar in structure to those within denuded amniotic membrane. Limbal epithelial cells were successfully expanded upon the compressed collagen resulting in stratified layers of cells containing desmosome and hemidesmosome structures. The resulting corneal constructs of both the groups shared a high degree of transparency, cell morphology and cell stratification. Similar protein expression profiles for cytokeratin 3 and cytokeratin 14 and no significant difference in cytokeratin 12 mRNA expression levels by real time PCR were also observed. This study provides the first line of evidence that a laminin coated compressed collagen gel containing keratocytes can adequately support limbal epithelial cell expansion, stratification and differentiation to a degree that is comparable to the leading conventional scaffold, denuded amniotic membrane.
Resumo:
We compare the use of plastically compressed collagen gels to conventional collagen gels as scaffolds onto which corneal limbal epithelial cells (LECs) are seeded to construct an artificial corneal epithelium. LECs were isolated from bovine corneas (limbus) and seeded onto either conventional uncompressed or novel compressed collagen gels and grown in culture. Scanning electron microscopy (SEM) results showed that fibers within the uncompressed gel were loose and irregularly ordered, whereas the fibers within the compressed gel were densely packed and more evenly arranged. Quantitative analysis of LECs expansion across the surface of the two gels showed similar growth rates (p > 0.05). Under SEM, the LECs, expanded on uncompressed gels, showed a rough and heterogeneous morphology, whereas on the compressed gel, the cells displayed a smooth and homogeneous morphology. Transmission electron microscopy (TEM) results showed the compressed scaffold to contain collagen fibers of regular diameter and similar orientation resembling collagen fibers within the normal cornea. TEM and light microscopy also showed that cell–cell and cell–matrix attachment, stratification, and cell density were superior in LECs expanded upon compressed collagen gels. This study demonstrated that the compressed collagen gel was an excellent biomaterial scaffold highly suited to the construction of an artificial corneal epithelium and a significant improvement upon conventional collagen gels.