29 resultados para Observers
em CentAUR: Central Archive University of Reading - UK
Resumo:
Purpose: Vergence and accommodation studies often use adult participants with experience of vision science. Reports of infant and clinical responses are generally more variable and of lower gain, with the implication that differences lie in immaturity or sub-optimal clinical characteristics but expert/naïve differences are rarely considered or quantified. Methods: Sixteen undergraduates, naïve to vision science, were individually matched by age, visual acuity, refractive error, heterophoria, stereoacuity and near point of accommodation to second- and third-year orthoptics and optometry undergraduates (‘experts’). Accommodation and vergence responses were assessed to targets moving between 33 cm, 50 cm, 1 m and 2 m using a haploscopic device incorporating a PlusoptiX SO4 autorefractor. Disparity, blur and looming cues were separately available or minimised in all combinations. Instruction set was minimal. Results: In all cases, vergence and accommodation response slopes (gain) were steeper and closer to 1.0 in the expert group (p = 0.001), with the largest expert/naïve differences for both vergence and accommodation being for near targets (p = 0.012). For vergence, the differences between expert and naïve response slopes increased with increasingly open-loop targets (linear trend p = 0.025). Although we predicted that proximal cues would drive additional response in the experts, the proximity-only cue was the only condition that showed no statistical effect of experience. Conclusions: Expert observers provide more accurate responses to near target demand than closely matched naïve observers. We suggest that attention, practice, voluntary and proprioceptive effects may enhance responses in experienced participants when compared to a more typical general population. Differences between adult reports and the developmental and clinical literature may partially reflect expert/naïve effects, as well as developmental change. If developmental and clinical studies are to be compared to adult normative data, uninstructed naïve adult data should be used.
Resumo:
A polynomial-based ARMA model, when posed in a state-space framework can be regarded in many different ways. In this paper two particular state-space forms of the ARMA model are considered, and although both are canonical in structure they differ in respect of the mode in which disturbances are fed into the state and output equations. For both forms a solution is found to the optimal discrete-time observer problem and algebraic connections between the two optimal observers are shown. The purpose of the paper is to highlight the fact that the optimal observer obtained from the first state-space form, commonly known as the innovations form, is not that employed in an optimal controller, in the minimum-output variance sense, whereas the optimal observer obtained from the second form is. Hence the second form is a much more appropriate state-space description to use for controller design, particularly when employed in self-tuning control schemes.
Resumo:
Recent evidence suggests that the mirror neuron system responds to the goals of actions, even when the end of the movement is hidden from view. To investigate whether this predictive ability might be based on the detection of early differences between actions with different outcomes, we used electromyography (EMG) and motion tracking to assess whether two actions with different goals (grasp to eat and grasp to place) differed from each other in their initial reaching phases. In a second experiment, we then tested whether observers could detect early differences and predict the outcome of these movements, based on seeing only part of the actions. Experiment 1 revealed early kinematic differences between the two movements, with grasp-to-eat movements characterised by an earlier peak acceleration, and different grasp position, compared to grasp-to-place movements. There were also significant differences in forearm muscle activity in the reaching phase of the two actions. The behavioural data arising from Experiments 2a and 2b indicated that observers are not able to predict whether an object is going to be brought to the mouth or placed until after the grasp has been completed. This suggests that the early kinematic differences are either not visible to observers, or that they are not used to predict the end-goals of actions. These data are discussed in the context of the mirror neuron system
Resumo:
Technological innovations have had a profound influence on how we study the sensory perception in humans and other animals. One example was the introduction of affordable computers, which radically changed the nature of visual experiments. It is clear that vision research is now at cusp of a similar shift, this time driven by the use of commercially available, low-cost, high- fidelity virtual reality (VR). In this review we will focus on: (a) the research questions VR allows experimenters to address and why these research questions are important, (b) the things that need to be considered when using VR to study human perception, (c) the drawbacks of current VR systems, and (d) the future direction vision research may take, now that VR has become a viable research tool.
Resumo:
Human observers exhibit large systematic distance-dependent biases when estimating the three-dimensional (3D) shape of objects defined by binocular image disparities. This has led some to question the utility of disparity as a cue to 3D shape and whether accurate estimation of 3D shape is at all possible. Others have argued that accurate perception is possible, but only with large continuous perspective transformations of an object. Using a stimulus that is known to elicit large distance-dependent perceptual bias (random dot stereograms of elliptical cylinders) we show that contrary to these findings the simple adoption of a more naturalistic viewing angle completely eliminates this bias. Using behavioural psychophysics, coupled with a novel surface-based reverse correlation methodology, we show that it is binocular edge and contour information that allows for accurate and precise perception and that observers actively exploit and sample this information when it is available.
Resumo:
Given capacity limits, only a subset of stimuli 1 give rise to a conscious percept. Neurocognitive models suggest that humans have evolved mechanisms that operate without awareness and prioritize threatening stimuli over neutral stimuli in subsequent perception. In this meta analysis, we review evidence for this ‘standard hypothesis’ emanating from three widely used, but rather different experimental paradigms that have been used to manipulate awareness. We found a small pooled threat-bias effect in the masked visual probe paradigm, a medium effect in the binocular rivalry paradigm and highly inconsistent effects in the breaking continuous flash suppression paradigm. Substantial heterogeneity was explained by the stimulus type: the only threat stimuli that were robustly prioritized across all three paradigms were fearful faces. Meta regression revealed that anxiety may modulate threat biases, but only under specific presentation conditions. We also found that insufficiently rigorous awareness measures, inadequate control of response biases and low level confounds may undermine claims of genuine unconscious threat processing. Considering the data together, we suggest that uncritical acceptance of the standard hypothesis is premature: current behavioral evidence for threat-sensitive visual processing that operates without awareness is weak.
Resumo:
The banded organization of clouds and zonal winds in the atmospheres of the outer planets has long fascinated observers. Several recent studies in the theory and idealized modeling of geostrophic turbulence have suggested possible explanations for the emergence of such organized patterns, typically involving highly anisotropic exchanges of kinetic energy and vorticity within the dissipationless inertial ranges of turbulent flows dominated (at least at large scales) by ensembles of propagating Rossby waves. The results from an attempt to reproduce such conditions in the laboratory are presented here. Achievement of a distinct inertial range turns out to require an experiment on the largest feasible scale. Deep, rotating convection on small horizontal scales was induced by gently and continuously spraying dense, salty water onto the free surface of the 13-m-diameter cylindrical tank on the Coriolis platform in Grenoble, France. A “planetary vorticity gradient” or “β effect” was obtained by use of a conically sloping bottom and the whole tank rotated at angular speeds up to 0.15 rad s−1. Over a period of several hours, a highly barotropic, zonally banded large-scale flow pattern was seen to emerge with up to 5–6 narrow, alternating, zonally aligned jets across the tank, indicating the development of an anisotropic field of geostrophic turbulence. Using particle image velocimetry (PIV) techniques, zonal jets are shown to have arisen from nonlinear interactions between barotropic eddies on a scale comparable to either a Rhines or “frictional” wavelength, which scales roughly as (β/Urms)−1/2. This resulted in an anisotropic kinetic energy spectrum with a significantly steeper slope with wavenumber k for the zonal flow than for the nonzonal eddies, which largely follows the classical Kolmogorov k−5/3 inertial range. Potential vorticity fields show evidence of Rossby wave breaking and the presence of a “hyperstaircase” with radius, indicating instantaneous flows that are supercritical with respect to the Rayleigh–Kuo instability criterion and in a state of “barotropic adjustment.” The implications of these results are discussed in light of zonal jets observed in planetary atmospheres and, most recently, in the terrestrial oceans.
Resumo:
In an immersive virtual environment, observers fail to notice the expansion of a room around them and consequently make gross errors when comparing the size of objects. This result is difficult to explain if the visual system continuously generates a 3-D model of the scene based on known baseline information from interocular separation or proprioception as the observer walks. An alternative is that observers use view-based methods to guide their actions and to represent the spatial layout of the scene. In this case, they may have an expectation of the images they will receive but be insensitive to the rate at which images arrive as they walk. We describe the way in which the eye movement strategy of animals simplifies motion processing if their goal is to move towards a desired image and discuss dorsal and ventral stream processing of moving images in that context. Although many questions about view-based approaches to scene representation remain unanswered, the solutions are likely to be highly relevant to understanding biological 3-D vision.
Resumo:
In an immersive virtual reality environment, subjects fail to notice when a scene expands or contracts around them, despite correct and consistent information from binocular stereopsis and motion parallax, resulting in gross failures of size constancy (A. Glennerster, L. Tcheang, S. J. Gilson, A. W. Fitzgibbon, & A. J. Parker, 2006). We determined whether the integration of stereopsis/motion parallax cues with texture-based cues could be modified through feedback. Subjects compared the size of two objects, each visible when the room was of a different size. As the subject walked, the room expanded or contracted, although subjects failed to notice any change. Subjects were given feedback about the accuracy of their size judgments, where the “correct” size setting was defined either by texture-based cues or (in a separate experiment) by stereo/motion parallax cues. Because of feedback, observers were able to adjust responses such that fewer errors were made. For texture-based feedback, the pattern of responses was consistent with observers weighting texture cues more heavily. However, for stereo/motion parallax feedback, performance in many conditions became worse such that, paradoxically, biases moved away from the point reinforced by the feedback. This can be explained by assuming that subjects remap the relationship between stereo/motion parallax cues and perceived size or that they develop strategies to change their criterion for a size match on different trials. In either case, subjects appear not to have direct access to stereo/motion parallax cues.
Resumo:
To steer a course through the world, people are almost entirely dependent on visual information, of which a key component is optic flow. In many models of locomotion, heading is described as the fundamental control variable; however, it has also been shown that fixating points along or near one's future path could be the basis of an efficient control solution. Here, the authors aim to establish how well observers can pinpoint instantaneous heading and path, by measuring their accuracy when looking at these features while traveling along straight and curved paths. The results showed that observers could identify both heading and path accurately (similar to 3 degrees) when traveling along straight paths, but on curved paths they were more accurate at identifying a point on their future path (similar to 5 degrees) than indicating their instantaneous heading (similar to 13 degrees). Furthermore, whereas participants could track changes in the tightness of their path, they were unable to accurately track the rate of change of heading. In light of these results, the authors suggest it is unlikely that heading is primarily used by the visual system to support active steering.
Resumo:
Using an immersive virtual reality system, we measured the ability of observers to detect the rotation of an object when its movement was yoked to the observer's own translation. Most subjects had a large bias such that a static object appeared to rotate away from them as they moved. Thresholds for detecting target rotation were similar to those for an equivalent speed discrimination task carried out by static observers, suggesting that visual discrimination is the predominant limiting factor in detecting target rotation. Adding a stable visual reference frame almost eliminated the bias. Varying the viewing distance of the target had little effect, consistent with observers underestimating distance walked. However, accuracy of walking to a briefly presented visual target was high and not consistent with an underestimation of distance walked. We discuss implications for theories of a task-independent representation of visual space. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Inhibition is intimately involved in the ability to select a target for a goal-directed movement. The effect of distracters on the deviation of oculomotor trajectories and landing positions provides evidence of such inhibition. individual saccade trajectories and landing positions may deviate initially either towards, or away from, a competing distracter-the direction and extent of this deviation depends upon saccade latency and the target to distracter separation. However, the underlying commonality of the sources of oculomotor inhibition has not been investigated. Here we report the relationship between distracter-related deviation of saccade trajectory, landing position and saccade latency. Observers saccaded to a target which could be accompanied by a distracter shown at various distances from very close (10 angular degrees) to far away (120 angular degrees). A fixation-gap paradigm was used to manipulate latency independently of the influence of competing distracters. When distracters were close to the target, saccade trajectory and landing position deviated toward the distracter position, while at greater separations landing position was always accurate but trajectories deviated away from the distracters. Different spatial patterns of deviations across latency were found. This pattern of results is consistent with the metrics of the saccade reflecting coarse pooling of the ongoing activity at the distracter location: saccade trajectory reflects activity at saccade initiation while landing position reveals activity at saccade end. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Models of perceptual decision making often assume that sensory evidence is accumulated over time in favor of the various possible decisions, until the evidence in favor of one of them outweighs the evidence for the others. Saccadic eye movements are among the most frequent perceptual decisions that the human brain performs. We used stochastic visual stimuli to identify the temporal impulse response underlying saccadic eye movement decisions. Observers performed a contrast search task, with temporal variability in the visual signals. In experiment 1, we derived the temporal filter observers used to integrate the visual information. The integration window was restricted to the first similar to 100 ms after display onset. In experiment 2, we showed that observers cannot perform the task if there is no useful information to distinguish the target from the distractor within this time epoch. We conclude that (1) observers did not integrate sensory evidence up to a criterion level, (2) observers did not integrate visual information up to the start of the saccadic dead time, and (3) variability in saccade latency does not correspond to variability in the visual integration period. Instead, our results support a temporal filter model of saccadic decision making. The temporal impulse response identified by our methods corresponds well with estimates of integration times of V1 output neurons.
Resumo:
Purpose. Drivers adopt smaller safety margins when pulling out in front of motorcycles compared with cars. This could partly account for why the most common motorcycle/car accident involves a car violating a motorcyclist's right of way. One possible explanation is the size-arrival effect in which smaller objects are perceived to arrive later than larger objects. That is, drivers may estimate the time to arrival of motorcycles to be later than cars because motorcycles are smaller. Methods. We investigated arrival time judgments using a temporal occlusion paradigm. Drivers recruited from the student population (n = 28 and n = 33) saw video footage of oncoming vehicles and had to press a response button when they judged that vehicles would reach them. Results. In experiment 1, the time to arrival of motorcycles was estimated to be significantly later than larger vehicles (a car and a van) for different approach speeds and viewing times. In experiment 2, we investigated an alternative explanation to the size-arrival effect: that the smaller size of motorcycles places them below the threshold needed for observers to make an accurate time to arrival judgment using tau. We found that the motorcycle/car difference in arrival time estimates was maintained for very short occlusion durations when tau could be estimated for both motorcycles and cars. Conclusions. Results are consistent with the size-arrival effect and are inconsistent with the tau threshold explanation. Drivers estimate motorcycles will reach them later than cars across a range of conditions. This could have safety implications.