4 resultados para OXYSTEROLS

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidised low density lipoprotein (LDL) hypothesis of atherosclerosis proposes that LDL undergoes oxidation in the interstitial fluid of the arterial wall. We have shown that aggregated (vortexed) nonoxidised LDL was taken up by J774 mouse macrophages and human monocyte-derived macrophages and oxidised intracellularly, as assessed by the microscopic detection of ceroid, an advanced lipid oxidation product. Confocal microscopy showed that the ceroid was located in the lysosomes. To confirm these findings, J774 macrophages were incubated with acetylated LDL, which is internalised rapidly to lysosomes, and then incubated (chase incubation) in the absence of any LDL. The intracellular levels of oxysterols, measured by HPLC, increased during the chase incubation period, showing that LDL must have been oxidised inside the cells. Furthermore, we found that this oxidative modification was inhibited by lipid-soluble antioxidants, an iron chelator taken up by fluid-phase pinocytosis and the lysosomotropic drug chloroquine, which increases the pH of lysosomes. The results indicate that LDL oxidation can occur intracellularly, most probably within lysosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LDL oxidation may be important in atherosclerosis. Extensive oxidation of LDL by copper induces increased uptake by macrophages, but results in decomposition of hydroperoxides, making it more difficult to investigate the effects of hydroperoxides in oxidised LDL on cell function. We describe here a simple method of oxidising LDL by dialysis against copper ions at 4 degrees C, which inhibits the decomposition of hydroperoxides, and allows the production of LDL rich in hydroperoxides (626 +/- 98 nmol/mg LDL protein) but low in oxysterols (3 +/- 1 nmol 7-ketocholesterol/mg LDL protein), whilst allowing sufficient modification (2.6 +/- 0.5 relative electrophoretic mobility) for rapid uptake by macrophages (5.49 +/- 0.75 mu g I-125-labelled hydroperoxide-rich LDL vs. 0.46 +/- 0.04 mu g protein/mg cell protein in 18 h for native LDL). By dialysing under the same conditions, but at 37 degrees C, the hydroperoxides are decomposed extensively and the LDL becomes rich in oxysterols. This novel method of oxidising LDL with high yield to either a hydroperoxide- or oxysterol-rich form by simply altering the temperature of dialysis may provide a useful tool for determining the effects of these different oxidation products on cell function. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidized low density lipoprotein (LDL) hypothesis of atherosclerosis proposes that LDL undergoes oxidation in the interstitial fluid of the arterial wall. We have shown that aggregated (vortexed) nonoxidized LDL was taken up by J774 mouse macrophages and human monocyte-derived macrophages and oxidized intracellularly, as assessed by the microscopic detection of ceroid, an advanced lipid oxidation product. Confocal microscopy showed that the ceroid was located in the lysosomes. To confirm these findings, J774 macrophages were incubated with acetylated LDL, which is internalized rapidly to lysosomes, and then incubated (chase incubation) in the absence of any LDL. The intracellular levels of oxysterols, measured by HPLC, increased during the chase incubation period, showing that LDL must have been oxidized inside the cells. Furthermore, we found that this oxidative modification was inhibited by lipid-soluble antioxidants, an iron chelator taken up by fluid-phase pinocytosis and the lysosomotropic drug chloroquine, which increases the pH of lysosomes. The results indicate that LDL oxidation can occur intracellularly, most probably within lysosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low density lipoprotein (LDL) has recently been shown to be oxidised by iron within the lysosomes of macrophages and this is a novel potential mechanism for LDL oxidation in atherosclerosis. Our aim was to characterise the chemical and physical changes induced in LDL by iron at lysosomal pH and to investigate the effects of iron chelators and α-tocopherol on this process. LDL was oxidised by iron at pH 4.5 and 37°C and its oxidation monitored by spectrophotometry and HPLC. LDL was oxidised effectively by FeSO4 (5-50 µM) and became highly aggregated at pH 4.5, but not at pH 7.4. Cholesteryl esters decreased and after a pronounced lag 7-ketocholesterol increased greatly. Total hydroperoxides (measured by tri-iodide assay) increased up to 24 h and then decreased only slowly. The lipid composition after 12 h at pH 4.5 and 37°C was similar to that of LDL oxidised by copper at pH 7.4 and 4°C, i.e. rich in hydroperoxides but low in oxysterols. Previously oxidised LDL aggregated rapidly and spontaneously at pH 4.5, but not at pH 7.4. Ferrous was much more effective than ferric iron at oxidising LDL when added after the oxidation was already underway. The iron chelators diethylenetriaminepentaacetic acid and, to a lesser extent, desferrioxamine inhibited LDL oxidation when added during its initial stages, but were unable to prevent LDL aggregating after it had been partially oxidised. Surprisingly, desferrioxamine increased the rate of LDL modification when added late in the oxidation process. α-Tocopherol enrichment of LDL initially increased the oxidation of LDL, but inhibited it later. The presence of oxidised and highly aggregated lipid within lysosomes has the potential to perturb the function of these organelles and to promote atherosclerosis.