13 resultados para OVERLAYER

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the mixed p(3x3)-(3OH+3H(2)O) phase on Pt{111} has been investigated by low-energy electron diffraction-IV structure analysis. The OH+H2O overlayer consists of hexagonal rings of coplanar oxygen atoms interlinked by hydrogen bonds. Lateral shifts of the O atoms away from atop sites result in different O-O separations and hexagons with only large separations (2.81 and 3.02 angstrom) linked by hexagons with alternating separations of 2.49 and 2.81/3.02 A. This unusual pattern is consistent with a hydrogen-bonded network in which water is adsorbed in cyclic rings separated by OH in a p(3x3) structure. The topmost two layers of the Pt atoms relax inwards with respect to the clean surface and both show vertical buckling of up to 0.06 angstrom. In addition, significant shifts away from the lateral bulk positions have been found for the second layer of Pt atoms. (C) 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A colloidal stable silica-encapsulated magnetic nano-composite of a controlled dimension is, for the first time, employed to carry beta-lactamase via chemical linkage on the silica overlayer: activity study reflects that this new type of immobilisation allows site (enzyme) isolation, accessibility as good as free enzyme and recovery & reusability upon application of magnetic separation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of alanine on Cu {110} was studied by a combination of near edge X-ray absorption fine structure (NEXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). Large chemical shifts in the C 1s, N 1s, and O 1s XP spectra were found between the alanine multilayer and the chemisorbed and pseudo-(3 x 2) alaninate layers. From C, N, and O K-shell NEXAFS spectra the tilt angles of the carboxylate group (approximate to 26 degrees in plane with respect to [1 (1) over bar0] and approximate to 45 degrees out of plane) and the C-N bond angle with respect to [1 (1) over bar0] could be determined for the pseudo-(3 x 2) overlayer. Using this information three adsorption geometries could be eliminated from five p(3 x 2) structures which lead to almost identical heats of adsorption in the DFT calculations between 1.40 and 1.47 eV/molecule. Due to the small energy difference between the remaining two structures it is not unlikely that these coexist on the surface at room temperature. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quantitative low energy electron diffraction (LEED) analysis has been performed for the p(2 x 2)-S and c(2 x 2)-S surface structures formed by exposing the (1 x 1) phase of Ir{100} to H2S at 750 K. S is found to adsorb on the fourfold hollow sites in both structures leading to Pendry R-factor values of 0.17 for the p(2 x 2)-S and 0.16 for the c(2 x 2)-S structures. The distances between S and the nearest and next-nearest Ir atoms were found to be similar in both structures: 2.36 +/- 0.01 angstrom and 3.33 +/- 0.01 angstrom, respectively. The buckling in the second substrate layer is consistent with other structural studies for S adsorption on fcc{100} transition metal surfaces: 0.09 angstrom for p(2 x 2)-S and 0.02 angstrom for c(2 x 2)-S structures. The (1 x 5) reconstruction, which is the most stable phase for clean Ir{100}, is completely lifted and a c(2 x 2)-S overlayer is formed after exposure to H,S at 300 K followed by annealing to 520 K. CO temperature-programmed desorption (TPD) experiments indicate that the major factor in the poisoning of Ir by S is site blocking. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The co-adsorption of CO and O on the unreconstructed (1 x 1) phase of Ir {100} was examined by low energy electron diffraction (LEED) and temperature programmed desorption (TPD). When CO is adsorbed at 188 K onto the Ir{100} surface precovered with 0.5 ML O, a mixed c(4 x 2)-(2O + CO) overlayer is formed. All CO is oxidised upon heating and desorbs as CO2 in three distinct stages at 230 K, 330 K and 430 K in a 2:1:2 ratio. The excess oxygen left on the surface after all CO has reacted forms an overlayer with a LEED pattern with p(2 x 10) periodicity. This overlayer consists of stripes with a local p(2 x 1)-O arrangement of oxygen atoms separated by stripes of uncovered It. When CO is adsorbed at 300 K onto the surface precovered with 0.5 ML O an apparent (2 x 2) LEED pattern is observed. LEED IV analysis reveals that this pattern is a superposition of diffraction patterns from islands of c(2 x 2)-CO and p(2 x 1)-O structures on the surface. Heating this co-adsorbed overlayer leads to the desorption of CO, in two stages at 330 K and 430 K; the excess CO (0.1 ML) desorbs at 590 K. LEED IV structural analysis of the mixed c(4 x 2) O and CO overlayer shows that both the CO molecules and the O atoms occupy bridge sites. The O atoms show significant lateral displacements of 0.14 angstrom away from the CO molecules; the C-O bond is slightly expanded with respect to the gas phase (1.19 angstrom); the modifications of the Ir substrate with respect to the bulk-terminated surface are very small. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymes are versatile biocatalysts with major advantages of ultrahigh reaction selectivity and specificity under mild conditions, which currently find increasing applications. However, their applications are often hampered by difficulties in recovery and recycling. As a result, we carried out detailed investigations on the synthesis and characterization of silica-encapsulated iron oxide magnetic nanoparticles of controlled dimension as an enzyme carrier. It is shown that the relatively smaller sized silica-coated magnetic nanoparticle prepared by the microemlusion technique can a carry bulky enzyme, beta-lactamase, via chemical linkages on the silica overlayer without severely blocking the enzymatic active center ( which is commonly encountered in conventional solid supports). An activity study by Michalis-Menten kinetics reflects that this new type of immobilization allows enzyme isolation with accessibility as good as free enzyme. The recovery and reusability of the nanoparticle-supported enzyme upon application of magnetic separation are also demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional supported metal catalysts are metal nanoparticles deposited on high surface area oxide supports with a poorly defined metal−support interface. Typically, the traditionally prepared Pt/ceria catalyzes both methanation (H2/CO to CH4) and water−gas shift (CO/H2O to CO2/H2) reactions. By using simple nanochemistry techniques, we show for the first time that Pt or PtAu metal can be created inside each CeO2 particle with tailored dimensions. The encapsulated metal is shown to interact with the thin CeO2 overlayer in each single particle in an optimum geometry to create a unique interface, giving high activity and excellent selectivity for the water−gas shift reaction, but is totally inert for methanation. Thus, this work clearly demonstrates the significance of nanoengineering of a single catalyst particle by a bottom-up construction approach in modern catalyst design which could enable exploitation of catalyst site differentiation, leading to new catalytic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrathin bimetallic layers create unusual magnetic and surface chemical effects through the modification of electronic structure brought on by low dimensionality, polymorphism, reduced screening, and epitaxial strain. Previous studies have related valence and core-level shifts to surface reactivity through the d-band model of Hammer and Nørskov, and in heteroepitaxial films this band position is determined by competing effects of coordination, strain, and hybridization of substrate and overlayer states. In this study we employ the epitaxially matched Pd on Re{0001} system to grow films with no lateral strain. We use a recent advancement in low-energy electron diffraction to expand the data range sufficiently for a reliable determination of the growth sequence and out-of-plane surface relaxation as a function of film thickness. The results are supported by scanning tunneling microscopy and X-ray photoemission spectroscopy, which show that the growth is layer-by-layer with significant core-level shifts due to changes in film structure, morphology, and bonding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2×1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ±22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by −4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (b10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adsorption of l-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π ⁎ resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√13x2√13)R13° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used low-temperature STM, together with DFT calculations incorporating the effects of dispersion forces, to study from a structural point of view the interaction of NO2 with Au{111} surfaces. NO2 adsorbs molecularly on Au{111} at 80 K, initially as small, disordered clusters at the elbows of the type-x reconstruction lines of the clean-surface herringbone reconstruction, and then as larger, ordered islands on the fcc regions. Within the islands, the NO2 molecules define a (√3 × 2)rect. superlattice, for which we evaluate structural models. By around 0.25 ML coverage, the herringbone reconstruction has been lifted, accompanied by the formation of Au nanoclusters, and the islands have coalesced. At this stage, essentially the whole surface is covered with an overlayer consisting predominantly of domains of the (√3 × 2)rect. structure, but also containing less wellordered regions. With further exposure, the degree of disorder in the overlayer increases; saturation occurs close to 0.43 ML.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the interplay between intrinsic molecular chirality and chirality of the bonding footprint is crucial in exploiting enantioselectivity at surfaces. As such, achiral glycine and chiral alanine are the most obvious candidates if one is to study this interplay on different surfaces. Here, we have investigated the adsorption of glycine on Cu{311} using reflection-absorption infrared spectroscopy, low-energy electron diffraction, temperature-programmed desorption and first-principles density-functional theory. This combination of techniques has allowed us to accurately identify the molecular conformations present under different conditions, and discuss the overlayer structure in the context of the possible bonding footprints. We have observed coverage-dependent local symmetry breaking, with three-point bonded glycinate moieties forming an achiral arrangement at low coverages, and chirality developing with the presence of two-point bonded moieties at high coverages. Comparison with previous work on the self-assembly of simple amino acids on Cu{311} and the structurally-similar Cu{110} surface has allowed us to rationalise the different conditions necessary for the formation of ordered chiral overlayers.