34 resultados para OVARIAN FOLLICLES

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. METHODS: Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor) and/or LY294002 (Akt inhibitor) and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione) determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. RESULTS: We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. CONCLUSION: These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGF beta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (similar to 40 turn). Ovaries were collected (n=16) from inid-sequence hens maintained on a long-day photoschedule (16h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of niRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0(.)05) in 8-9(.)9 mm follicles, whereas ActRIIA rose significantly from 6-7(.)9 mm to 8-9(.)9 nun, before filling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan niRNA expression rose 3-fold from 4-5(.)9 min to 8-9(.)9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7(.)9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0(.)05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 nim to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActIIA, increased 22-fold from F2 to F1 (P < 0(.)05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before filling similar to 50% in the F I. In all follicles studied expression of betaglycan and ActRI (granulosa: 1-0(.)65, P < 0-001, n=144/group; theca: r=0(.)49, P < 0-001, n=144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11(.)4-fold; ActRIIB, 5(.)1-fold; ActR(.) 3-8-fold: ActRIIA, 2(.)8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGF beta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (similar to 40 turn). Ovaries were collected (n=16) from inid-sequence hens maintained on a long-day photoschedule (16h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of niRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0(.)05) in 8-9(.)9 mm follicles, whereas ActRIIA rose significantly from 6-7(.)9 mm to 8-9(.)9 nun, before filling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan niRNA expression rose 3-fold from 4-5(.)9 min to 8-9(.)9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7(.)9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0(.)05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 nim to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActIIA, increased 22-fold from F2 to F1 (P < 0(.)05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before filling similar to 50% in the F I. In all follicles studied expression of betaglycan and ActRI (granulosa: 1-0(.)65, P < 0-001, n=144/group; theca: r=0(.)49, P < 0-001, n=144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11(.)4-fold; ActRIIB, 5(.)1-fold; ActR(.) 3-8-fold: ActRIIA, 2(.)8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the purpose of eliciting a superovulatory response, 12 adult nulliparous Boer goat does were actively immunized against a recombinant a-subunit of ovine inhibin (roIHN-alpha; two injections of 100 mg 4 weeks apart). Another 12 control Boer goat does were treated with physiological saline and acted as controls. One year later the immunized animals were boostered by the administration of another dose (100 mg) of the immunogen. Following treatment, blood samples were collected twice weekly for the periods of 16 and 12 weeks, respectively, to monitor the inhibin binding ability with the aid of a radio-tracer binding assay. Throughout the experiment, estrus detection was conducted twice daily with the aid of an aproned intact buck. From the first day after treatment to 48 h after standing estrus, ovarian activity was monitored daily by transrectal ultrasonography. On alternate estrous cycles, does were mated and 6 days later flushed transcervically to recover embryos. All goats treated with the roIHN-alpha produced antibodies reactive to the native bovine inhibin tracer-the titre increasing from 2.9 +/- 0.4 to a maximum of 21.9 +/- 2.9% binding after the second injection. The antibody titre gradually subsided over the next 16 weeks. The booster injection restored an elevated antibody titre (11.7 +/- 0.4%), which was maintained until the end of the sampling period 12 weeks later. In the control goats only trace amounts of antibody were recorded throughout the trial. In the roIHN-alpha-immunized goats the number of follicles reaching a diameter of > 4 mm was 14.6 +/- 1.2 per doe. A positive correlation was recorded between the follicle number and antibody titre (r=0.61; P < 0.01). The number of follicles ovulating per doe (6.9 +/- 0.7) followed the same tendency-however, the proportion decreased with increasing follicle numbers. A relatively weak correlation was recorded between the inhibin binding ability and number of ovulations (r=0.27; P < 0.05). In the control goats the majority (92%) of follicles exceeding 4 mm in diameter ovulated (2.5 +/- 0.1 follicles/doe). Embryo collection proved unsatisfactory (42% versus 39% recovery for immunized and control animals, respectively)-presumably because the uterine lumen of the nulliparous does was too narrow to permit effective flushing. In the group of immunized goats the occurrence of short estrous cycles (< 15 days) recorded was 34% versus only 6% in the controls. Overall, immunization of goats against roIHN-alpha led to an almost six-fold increase in number of ovarian follicles, a three-fold increase in ovulations and, despite the low recovery rate, a more than three-fold increase in ova or embryos recovered. It may be concluded that treatment of female goats with roIHN-alpha leads to an inhibin antibody response, accompanied by enhanced ovarian activity. The response was, however, accompanied by a large proportion of retained follicles and a high incidence of short estrous cycles. These problems need to be further investigated before rendering the method fit for application in embryo transfer programs in goats. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insulin-like peptide 3 (INSL3), a major product of testicular Leydig cells, is also expressed by the ovary but its functional role remains poorly understood. Here, we quantified expression of INSL3 and its receptor RXFP2 in theca interna (TIC) and granulosa (GC) compartments of developing bovine antral follicles and in corpora lutea (CL). INSL3 and RXFP2 mRNA levels were much higher in TIC than GC and increased progressively during follicle maturation with INSL3 peaking in large (11-18mm) estrogen-active follicles and RXFP2 peaking in 9-10mm follicles before declining in larger (11-18mm) follicles. Expression of both INSL3 and RXFP2 in CL was much lower than in TIC. In situ hybridization and immunohistochemistry confirmed abundant expression of INSL3 mRNA and protein in TIC. These observations indicate follicular TIC rather than CL as the primary site of both INSL3 production and action, implying a predominantly auto-/paracrine role in TIC. To corroborate the above findings, we showed that in vitro exposure of TIC to a luteinizing concentration of LH greatly attenuated expression of both INSL3 and its receptor while increasing progesterone secretion and expression of STAR and CYP11A1. Moreover, in vivo, a significant cyclic variation in plasma INSL3 was observed during synchronized estrous cycles. INSL3 and estradiol-17β followed a similar pattern, both increasing after luteolysis, before falling sharply after the LH surge. Thus, theca-derived INSL3, likely from the dominant pre-ovulatory follicle, is detectable in peripheral blood of cattle and expression is down-regulated during luteinisation induced by the pre-ovulatory LH surge. Collectively, these findings underscore the likely role of INSL3 as an important intrafollicular modulator of TIC function/steroidogenesis, whilst raising doubts about its potential contribution to CL function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ovarian follicle development continues in a wave-like manner during the bovine oestrous cycle giving rise to variation in the duration of ovulatory follicle development. The objectives of the present study were to determine whether a relationship exists between the duration of ovulatory follicle development and pregnancy rates following artificial insemination (AI) in dairy cows undergoing spontaneous oestrous cycles, and to identify factors influencing follicle turnover and pregnancy rate and the relationship between these two variables. Follicle development was monitored by daily transrectal ultrasonography from 10 days after oestrus until the subsequent oestrus in 158 lactating dairy cows. The cows were artificially inseminated following the second observed oestrus and pregnancy was diagnosed 35 days later. The predominant pattern of follicle development was two follicle waves (74.7%) with three follicle waves in 22.1% of oestrous cycles and four or more follicle waves in 3.2% of oestrous cycles. The interval from ovulatory follicle emergence to oestrus (EOI) was 3 days longer (P < 0.0001) in cows with two follicle waves than in those with three waves. Ovulatory follicles from two-wave oestrous cycles grew more slowly but were approximately 2 mm larger (P < 0.0001) on the day of oestrus. Twin ovulations were observed in 14.2% of oestrous cycles and occurred more frequently (P < 0.001) in three-wave oestrous cycles; consequently EOI was shorter in cows with twin ovulations. Overall, 57.0% of the cows were diagnosed pregnant 35 days after AI. Linear logistic regression analysis revealed an inverse relationship between EOI and the proportion of cows diagnosed pregnant, among all cows (n = 158; P < 0.01) and amongst those with single ovulations (n = 145; P < 0.05). Mean EOI was approximately I day shorter (P < 0.01) in cows that became pregnant than in non-pregnant cows; however, pregnancy rates did not differ significantly among cows with different patterns of follicle development. These findings confirm and extend previous observations in pharmacologically manipulated cattle and show, for the first time, that in dairy cows undergoing spontaneous oestrous cycles, natural variation in the duration of post-emergence ovulatory follicle development has a significant effect on pregnancy rate, presumably reflecting variation in oocyte developmental competence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antral follicle growth in cattle occurs in two distinct phases; the first 'slow' growth phase spans the time from antrum acquisition to a size of approximately 3 mm detectable by transrectal ultrasound, and the second 'fast' phase is gondadotrophin-dependent and includes cohort growth, dominant follicle (DF) selection, and DF growth. This review summarises current concepts of the relative roles FSH and LH, ovarian and metabolic hormones play mainly in the second phase of antral follicle growth in animals of different reproductive and nutritional states. It is proposed that differential FSH response may enable one cohort follicle to become selected, and that follicular secretions, particularly inhibin, suppress FSH and thus are responsible for DF selection and dominance. Acute dependence of the DF on LH pulses will determine DF lifespan, and the LH pulse profile can be influenced by metabolic hormones such as leptin, providing one possible link for nutritional state and reproduction. Direct ovarian effects of acute and chronic changes in growth hormone, insulin and insulin-like growth factor (IGF)-I have been described on cohort follicles, DF oestrogen activity and on DF growth. Influences of metabolic hormones on early antral follicles undergoing their first 'slow' growth phase are less well described, yet metabolic hormones appear to enhance growth into the cohort available for FSH-induced emergence, and may influence subsequent developmental competence of oocytes. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms whereby the high variation in numbers of morphologically healthy oocytes and follicles in ovaries (ovarian reserve) may have an impact onovarian function, oocyte quality, and fertility are poorly understood. The objective was to determine whether previously validated biomarkers for follicular differentiation and function, as well as oocyte quality differed between cattle with low versus a high antral follicle count (AFC). Ovaries were removed (n = 5 per group) near the beginning of the nonovulatory follicular wave, before follicles could be identified via ultrasonography as being dominant, from heifers with high versus a low AFC. The F1, F2, and F3 follicles were dissected and diameters determined. Follicular fluid and thecal, granulosal, and cumulus cells and the oocyte were isolated and subjected to biomarker analyses. Although the size and numerous biomarkers of differentiation, such as mRNAs for the gonadotropin receptors, were similar, intrafollicular concentrations of estradiol and the abundance of mRNAs for CYP19A1 in granulosal cells and ESR1, ESR2, and CTSB in cumulus cells were greater, whereas mRNAs for AMH in granulosal cells and TBC1D1 in thecal cells were lower for animals with low versus a high AFC during follicle waves. Hence, variation in the ovarian reserve may have an impact on follicular function and oocyte quality via alterations in intrafollicular estradiol production and expression of key genes involved in follicle-stimulating hormone action (AMH) and estradiol (CYP19A1) production by granulosal cells, function and survival of thecal cells (TBC1D1), responsiveness of cumulus cells to estradiol (ESR1, ESR2), and cumulus cell determinants of oocyte quality (CTSB).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following parturition, all cows display a wave of ovarian follicular growth, but a large proportion fail to generate a preovulatory rise in estradiol, and hence fail to ovulate. Follicle-stimulating hormone (FSH) exists as multiple isoforms in the circulation depending on the type and extent of glycosylation, and this has pronounced effects on its biological properties. This study examined differences in plasma FSH, estradiol, and inhibin A concentrations, and the distribution of FSH isoforms in cows with ovulatory or atretic dominant follicles during the first postpartum follicle wave. Plasma FSH isoform distribution was examined in both groups during the period of final development of the dominant follicle by liquid phase isoelectric focusing. Cows with an ovulatory follicle had higher circulating estradiol and inhibin A concentrations, and lower plasma FSH concentrations. The distribution of FSH isoforms displayed a marked shift toward the less acidic isoforms in cows with ovulatory follicles. A higher proportion of the FSH isoforms had a pl>5.0 in cows with ovulatory follicles compared to those with atretic follicles. In addition, cows with ovulatory follicles had greater dry matter intake, superior energy balance, elevated circulating concentrations of insulin and insulin-like growth factor-I, and lower plasma nonesterified fatty acids. The shift in FSH isoforms toward a greater abundance of the less acidic isoforms appears to be a key component in determining the capability for producing a preovulatory rise in estradiol, and this shift in FSH isoforms was associated with more favorable bioenergetic and metabolic status. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ovarian follicle development is regulated through endocrine and local mechanisms. Increasing evidence indicates roles for transforming growth factor beta superfamily members, including inhibins and activins. We recently identified divergent expression of mRNAs encoding activin receptors (ActR) and inhibin co-receptor betaglycan in chicken follicles at different stages of maturation. Here, we compare the actions of LH and FSH (0, 1, 10, 100 ng/ml) on levels of mRNA for ActRI, ActRIIA, ActRIIB and betaglycan in chicken granulosa and theca cells (GC and TC) from preovulatory (F1) and prehierarchical (6-8 mm) follicles. The expression of mRNAs for LH-R and FSH-R and production of inhibin A, oestradiol and progesterone were also quantified. FSH decreased ActRIIB and ActRI mRNA levels in 6-8 mm GC, whereas LH increased the mRNA levels. Both LH and FSH enhanced ActRIIA (5- and 8.5-fold) and betaglycan mRNA expression (2- and 3.5-fold) in 6-8 mm GC. In 6-8 mm TC, LH and FSH both increased the betaglycan mRNA level (7- and 3.5-fold respectively) but did not affect ActRI, ActRIIA and ActRIIB transcript levels. In F1 GC, both LH and FSH stimulated ActRI (2- and 2.4-fold), ActRIIB (3.2- and 2.7-fold) and betaglycan (7- and 4-fold) mRNA levels, while ActRIIA mRNA was unaffected. In F1 TC, LH and FSH reduced ActRIIA (35-50%) and increased (4.5- and 7.6-fold) betaglycan mRNA, but had no effect on ActRI and ActRIIB transcript levels. Results support the hypothesis that expression of ActR and betaglycan are differentially regulated by gonadotrophins during follicle maturation in the hen. This may represent an important mechanism for fine-tuning follicle responsiveness to local and systemic activins and inhibins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, exciting progress has been made towards unravelling the complex intraovarian control mechanisms that, in concert with systemic signals, coordinate the recruitment, selection and growth of follicles from the primordial stage through to ovulation and corpus luteum formation. A plethora of growth factors, many belonging to the transforming growth factor-beta (TGF-beta) superfamily, are expressed by ovarian somatic cells and oocytes in a developmental, stage-related manner and function as intraovarian regulators of folliculogenesis. Two such factors, bone morphogenetic proteins, RMP-4 and BMP-7, are expressed by ovarian stromal cells and/or theca cells and have recently been implicated as positive regulators of the primordial-to-primary follicle transition. In contrast, evidence indicates a negative role for anti-Mullerian hormone (AMH, also known as Mullerian-inhibiting substance) of pre-granulosa/granulosa cell origin in this key event and subsequent progression to the antral stage. Two other TGF-beta superfamily members, growth and differentiation factor-9 (GDF-9) and BMP-15 (also known as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play key roles in promoting follicle growth beyond the primary stage; mice with null mutations in the gdf-9 gene or ewes with inactivating mutations in gdf-9 or bmp-15 genes are infertile with follicle development arrested at the primary stage. Studies on later stages of follicle development indicate positive roles for granulosa cell-derived activin, BMP-2, -5 and -6, theca cell-derived BMP-2, -4 and -7 and oocyte-derived BMP-6 in promoting granulosa cell proliferation, follicle survival and prevention of premature luteinization and/or atresia. Concomitantly, activin, TGF-beta and several BMPs may exert paracrine actions on theca cells to attenuate LH-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection in monovular species may depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Changes in intrafollicular activins, GDF-9, AMH and several BMPs may contribute to this selection process by modulating both FSH- and IGF-dependent signalling pathways in granulosa cells. Activin may also play a positive role in oocyte maturation and acquisition of developmental competence. in addition to its endocrine role to suppress FSH secretion, increased output of inhibin by the selected dominant follicle(s) may upregulate LH-induced androgen secretion that is required to sustain a high level of oestradiol secretion during the pre-ovulatory phase. Advances in our understanding of intraovarian regulatory mechanisms should facilitate the development of new approaches for monitoring and manipulating ovarian function and improving fertility in domesticated livestock, endangered species and man.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent, causes, and physiological significance of the variation in number of follicles growing during ovarian follicular waves in human beings and cattle are unknown. Therefore, the present study examined the variability and repeatability in numbers of follicles 3 mm or greater in diameter during the follicular waves in bovine estrous cycles, and we determined if the variation in number of follicles during waves was associated with alterations in secretion of FSH, estradiol, inhibin, and insulin-like growth factor I (IGF-I). Dairy cattle were subjected to twice-daily ultrasound analysis to count total number of antral follicles 3 mm or greater in diameter throughout 138 different follicular waves. In another study, blood samples were taken at frequent intervals from cows that consistently had low or very high numbers of follicles during waves and were subjected to immunoassays. Results indicate the following: First, despite an approximately sevenfold variation in number of follicles during waves among animals and marked differences in age, stage of lactation, and season of the year, a very highly repeatable (0.95) number of follicles 3 mm or greater in diameter is maintained during the ovulatory and nonovulatory follicular waves of individuals. Second, variation in number of follicles 3 mm or greater in diameter during waves and the inverse association of number of follicles during waves with FSH are not directly explained by alterations in the patterns of secretion of estradiol, inhibin, or IGF-I. Third, ovarian ultrasound analysis can be used reliably by investigators to identify cattle that consistently have low or high numbers of follicles during waves, thus providing a novel experimental model to determine the causes and physiological significance of the high variation in antral follicle number during follicular waves among single-ovulating species, such as cattle or humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ovarian follicle development continues in a wave-like manner during the bovine oestrous cycle giving rise to variation in the duration of ovulatory follicle development. The objectives of the present study were to determine whether a relationship exists between the duration of ovulatory follicle development and pregnancy rates following artificial insemination (AI) in dairy cows undergoing spontaneous oestrous cycles, and to identify factors influencing follicle turnover and pregnancy rate and the relationship between these two variables. Follicle development was monitored by daily transrectal ultrasonography from 10 days after oestrus until the subsequent oestrus in 158 lactating dairy cows. The cows were artificially inseminated following the second observed oestrus and pregnancy was diagnosed 35 days later. The predominant pattern of follicle development was two follicle waves (74.7%) with three follicle waves in 22.1% of oestrous cycles and four or more follicle waves in 3.2% of oestrous cycles. The interval from ovulatory follicle emergence to oestrus (EOI) was 3 days longer (P < 0.0001) in cows with two follicle waves than in those with three waves. Ovulatory follicles from two-wave oestrous cycles grew more slowly but were approximately 2 mm larger (P < 0.0001) on the day of oestrus. Twin ovulations were observed in 14.2% of oestrous cycles and occurred more frequently (P < 0.001) in three-wave oestrous cycles; consequently EOI was shorter in cows with twin ovulations. Overall, 57.0% of the cows were diagnosed pregnant 35 days after AI. Linear logistic regression analysis revealed an inverse relationship between EOI and the proportion of cows diagnosed pregnant, among all cows (n = 158; P < 0.01) and amongst those with single ovulations (n = 145; P < 0.05). Mean EOI was approximately I day shorter (P < 0.01) in cows that became pregnant than in non-pregnant cows; however, pregnancy rates did not differ significantly among cows with different patterns of follicle development. These findings confirm and extend previous observations in pharmacologically manipulated cattle and show, for the first time, that in dairy cows undergoing spontaneous oestrous cycles, natural variation in the duration of post-emergence ovulatory follicle development has a significant effect on pregnancy rate, presumably reflecting variation in oocyte developmental competence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the paucity of information on the potential roles of bone morphogenetic proteins (BMPs) in the ruminant ovary we conducted immunolocalization and functional studies on cells isolated from bovine antral follicles. Immunocytochemistry revealed expression of BMP-4 and -7 in isolated theca cells whereas granulosa cells and oocytes selectively expressed RMP-6. All three cell types expressed a range of BMP-responsive type-I (BMPRIB, ActRI) and type-II (BMPRII, ActRII, ActRIIB) receptors supporting autocrine/paracrine roles within the follicle. This was reinforced by functional experiments on granulosa cells which showed that BMP-4, -6 and -7 promoted cellular accumulation of phosphorylated Smad-1 but not Smad-2 and enhanced 'basal' and IGF-stimulated secretion of oestradiol (E2), inhibin-A, activin-A and follistatin (FS). Concomitantly, each BMP suppressed 'basal' and IGF-stimulated progesterone secretion, consistent with an action to prevent or delay atresia and/or luteinization. BMPs also increased viable cell number under 'basal' (BMP-4 and -7) and IGF-stimulated (BMP-4, -6 and -7) conditions. Since FS, a product of bovine granulosa cells, has been shown to bind several BMPs, we used the Biacore technique to compare its binding affinities for activin-A (prototype FS ligand) and BMP-4, -6 and -7. Compared with activin-A (K-d 0.28 +/- 0.02 nM; 100%), the relative affinities of FS for BMP-4, -6 and -7 were 10, 5 and 1% respectively. Moreover, studies on granulosa cells showed that preincubation of ligand with excess FS abolished activin-A-induced phosphorylation of Smad-2 and BMP-4-induced phosphorylation of Smad-1. However, FS only partially reversed BMP-6-induced Smad-1 phosphorylation and had no inhibitory effect on BMP-7-induced Smad-1 phosphorylation. These findings support functional roles for BMP-4, -6 and -7 as paracrine/autocrine modulators of granulosa cell steroidogenesis, peptide secretion and proliferation in bovine antral follicles. The finding that FS can differentially modulate BMP-induced receptor activation and that this correlates with the relative binding affinity of FS for each BMP type implicates FS as a potential modulator of BMP action in the ovary.