2 resultados para OUTBURSTS
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper reports changes in supraglacial debris cover and supra-/proglacial lake development associated with recent glacier retreat (1985-2000) in the central Caucasus Mountains, Russia. Satellite imagery (Landsat TM and ETM+) was used to map the surface area and supraglacial debris cover on six neighbouring glaciers in the Adylsu valley through a process of manual digitizing on a false-colour composite of bands 5, 4, 3 (red, green, blue). The distribution and surface area of supraglacial and proglacial lakes was digitized for a larger area, which extended to the whole Landsat scene. We also compare our satellite interpretations to field observations in the Adylsu valley. Supraglacial debris cover ranges from < 5% to > 25% on individual glaciers, but glacier retreat between 1985 and 2000 resulted in a 3-6% increase in the proportion of each glacier covered by debris. The only exception to this trend was a very small glacier where debris cover did not change significantly and remote mapping proved more difficult. The increase in debris cover is characterized by a progressive upglacier migration, which we suggest is being driven by focused ablation (and therefore glacier thinning) at the up-glacier limit of the debris cover, resulting in the progressive exposure of englacial debris. Glacier retreat has also been accompanied by an increase in the number of proglacial and supraglacial lakes in our study area, from 16 in 1985 to 24 in 2000, representing a 57% increase in their cumulative surface area. These lakes appear to be impounded by relatively recently lateral and terminal moraines and by debris deposits on the surface of the glacier. The changes in glacier surface characteristics reported here are likely to exert a profound influence on glacier mass balance and their future response to climate change. They may also increase the likelihood of glacier-related hazards (lake outbursts, debris slides), and future monitoring is recommended.
Resumo:
We investigate the effect of a secondary star magnetic field on the accretion disc dynamics of dwarf novae. Simulations have been carried out with a particle code and a dipolar magnetic field structure. The magnetic field acts to remove angular momentum from the disc material, increasing the inward mass flow. This makes the accretion disc more centrally condensed, causing a reduction in the recurrence time for dwarf nova outbursts. We have produced Doppler tomograms and light curves which may be compared with observations. These tomograms are significantly different from those produced in the absence of a magnetic field on the secondary. We derive an upper limit to the magnetic moment of the secondary star in UGem of mu_2<2x10^32 A m^2. The magnetic truncation of the accretion disc produces resonance phenomena similar to those seen in the superoutbursts of SUUMa systems. While these have not been observed for systems like UGem, observations of the SUUMa systems provide us with a useful diagnostic of the disc-field interaction. We are able to place an upper limit on the magnetic moment of the secondary in ZCha of mu_2<1x10^30 A m^2.