23 resultados para ORGANOMETALLICS
em CentAUR: Central Archive University of Reading - UK
Resumo:
New Mo(II) diimine derivatives of [Mo(q (3)allyl)X(CO)(2)(CH3CN)(2)] (allyl = C3H5 and C5H5O; X = Cl, Br) were prepared, and [MO(eta(3)-C3H5)Cl(CO)(2)(BIAN)] (BIAN = 1,4-(4-chloro)phenyl-2,3-naphthalene-diazabutadiene) (7) was structurally characterized by single-crystal X-ray diffraction. This complex adopted an equatorial-axial arrangement of the bidentate ligand (axial isomer), in contrast with the precursors, found as the equatorial isomer in the solid and fluxional in solution. The new complexes of the type [Mo(eta(3)-allyl)X(CO)(2)(N-N)l (N-N is a bidentate chelating dinitrogen ligand) were tested for the catalytic epoxidation of cyclooctene using tert-butyl hydroperoxide as oxidant. All catalytic systems were 100% selective toward epoxide formation. While their turnover frequencies paralleled those of related Mo(eta) carbonyl compounds or Mo(VI) compounds bearing similar N-donor ligands, they exhibited similar olefin conversions in consecutive catalytic runs. The acetonitrile precursors were generally more active than the diimine complexes, and the chloro derivatives more active than the bromo ones. Combined vibrational and NMR spectroscopy and computational studies (DFT) were used to investigate the nature of the molybdenum species formed in the catalytic system with [Mo(eta(3)-C3H5)Cl(CO)(2){1,4-(2,6-dimethyl)phenyl-2.3-dimethyldiazabuta diene}] (4) and to propose that the resulting species may be dimeric bearing oxide bridges.
First detection of methylgermylene in the gas phase and time-resolved study of some of its reactions
Resumo:
A new transient species has been produced and detected by the gas-phase, 193 nm laser flash photolysis of 1,3,4-trimethylgermacyclopent-3-ene, TMGCP. The species has strong visible absorptions in the wavelength region 450−520 nm (maximum at 485 nm) and is attributed to the germylene, MeGeH. Time-resolved kinetic studies have led to the first rate constants for its reactions with GeH4, Me2GeH2, C2H2, C2H4, C3H6, i-C4H8, TMGCP, MeOH, HCl, and SO2. The reactivity of MeGeH is compared to those of GeH2 and GeMe2. The Me-for-H substituent effect varies according to reaction type and is not constant from GeH2 to MeGeH to GeMe2.
Resumo:
An interesting chemical transformation of trialkylamines has taken place during the reaction of 2-(2', 6'-dimethylphenylazo)- 4-methylphenol ( 1) with K-2[ PtCl4] in refluxing methanol in the presence of trialkylamines, leading to the formation of organoplatinum complexes ( 2 and 3), where ligand 1 is coordinated as a bidentate N, O donor and the transformed trialkylamines are coordinated as bidentate C, N donors.
Resumo:
Crystal structure determination of adducts of sparteine and PhLi, (-)-sparteine and PhOLi and of sparteine and PhLi/PhOLi reveal a four-membered ring with two lithium centers, each capped by a (-)-sparteine ligand, as central motif of all structure. Quantum-chemical calculations show that the mixed aggregate [PhLi center dot PhOLi center dot 2(-)-sparteine] is energetically more favorable than the model system {1/2[PhLi center dot(-)-sparteine](2) + 1/2[PhOLi center dot(-)-sparteine](2)}.
Resumo:
In situ electrolysis within an optically transparent thin-layer electrochemical (OTTLE) cell was applied at 293-243 K in combination with FTIR spectroscopy to monitor spectral changes in the carbonyl stretching region accompanying oxidation of four tetracarbonyl olefin complexes of tungsten(0), viz., trans-[W(CO)(4)(eta(2)-ethene)(2)], trans-[W(CO)(4)(eta(2)-norbornene)(2)], [W(CO)(4)(eta(4)-cycloocta-1,5-diene)], and [W(CO)(4)(eta(4)-norbornadiene)]. In all cases, the one-electron-oxidized radical cations (17-electron complexes) have been identified by their characteristic nu(CO) patterns. For the bidentate diene ligands, the cis stereochemistry is essentially fixed in both the 18- and 17-electron complexes. The radical cation of the trans-bis(ethene) complex was observed only at 243 K, while at room temperature it isomerized rapidly to the corresponding cis-isomer. The thermal stability of the three studied radical cations in the cis configuration correlates with the relative strength of the W-CO bonds in the positions trans to the olefin ligand, which are more affected by the oxidation than the axial W-CO bonds. For the bulky norbornene ligands, their trans configuration in the bis(norbornene) complex remains preserved after the oxidation in the whole temperature range studied. The limited thermal stability of the radical cations of the trans-bis(alkene) complexes is ascribed to dissociation of the alkene ligands. The spectroelectrochemical results are in very good agreement with data obtained earlier by DFT (B3LYP) calculations.
Resumo:
A novel Ru(II) complex containing an electron-poor, highly fluorinated PCPArF pincer ligand has been synthesized in good yield via a transcyclometalation reaction. The complex has been fully characterized by elemental analysis, 1D and 2D NMR techniques, LTV-vis spectroscopy, and cyclic voltammetry. Single-crystal X-ray structural analysis and DFT calculations were performed. The structural features and electronic properties of the remarkably stable PCPArF-Ru(II) complex 4 have been investigated and show unanticipated differences compared to its protio analogue.
Resumo:
The syntheses and characterizations of several complexes containing ferrocenylethynyl and ferrocene-1,1'-bis(ethynyl) groups attached to M(PP)Cp'[M = Fe, Ru, PP = dppe, Cp'= Cp*; M = Ru, Os, PP = (PPh3)(2), dppe, Cp' = Cp] are described. Reactions with tetracyanoethene have given either tetracyanobuta-1,3-dienyl or eta(3)-allylic derivatives, while addition of Me+ afforded the corresponding vinylidene derivatives. Some electrochemical measurements are discussed in terms of electronic communication between the redox-active M(PP)Cp' groups through the ferrocene nucleus. The molecular structures of 14 of these complexes have been determined by crystallographic methods.
Resumo:
Laser flash photolysis studies of silylene, SiH2, generated by the 193 nm laser flash photolysis phenylsilane, PhSiH3, have been carried out to obtain rate constants for its bimolecular reaction with PhSiH3 itself, in the gas phase. The reaction was studied in SF6 (mostly at 10 Torr total pressure) over the temperature range 298-595 K. The rate constants (also found to be pressure independent) gave the following Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-9.92 +/- 0.04) + (3.31 +/- 0.27) kJ mol(-1)/RT ln 10 Similar investigations of the reaction of silylene with benzene, C6H6, (295-410 K) gave data suggestive of the fact that SiH2 might be reacting with photochemical products of C6H6 as well as with C6H6 itself. However, in the latter system, apparent rate constants were sufficiently low to indicate that in the reaction of SiH2 with PhSiH3 addition to the aromatic ring was unlikely to be in excess of 3% of the total. Quantum chemical calculations of the energy surface for SiH2 + C6H6 indicate that 7-silanorcaradiene and 7-silacycloheptatriene are possible products but that PhSiH3 formation is unlikely. RRKM calculations suggest that 7-silanorcaradiene should be the initial product but that it cannot be collisionally stabilized under experimental conditions
Resumo:
2-[Methyl(2-methylphenyl)amino]ethanol undergoes an ortho-alkyllithiation reaction with n-butyllithium to lead to a new mixed benzyllithium−lithium alkoxide. This organolithium species reacts with PPh2Cl, with selective P−C bond formation, to afford the ligand 2-[methyl(2-((diphenylphosphino)methyl)phenyl)amino]ethanol L1. The coordination of the ligand L1 to copper(I) leads to the complex [Cu(L1)2](BF4), whose structure has been determined by an X-ray diffraction study. In the solid state, one of the ligands acts as a monodentate phosphine while the other adopts a tridentate P,N,O coordination mode. A variable-temperature 31P NMR study demonstrated the existence of an equilibrium between the two modes in solution, with a coalescence temperature of ca. 0 °C, indicating a double-hemilabile behavior for the nitrogen and the oxygen functions. L1 reacts with [Pd(Me)(Cl)(COD)] to give a dinuclear complex in which the ligand appears to behave as a bridging anionic P,O ligand. Such a complex could serve as a model for a key intermediate in the proposed mechanism for the homogeneous catalysis of the methoxycarbonylation of propyne by certain palladium(II) complexes containing P,N ligands. L1 can undergo a second ortho-alkylmetalation reaction with n-butyllithium which, after addition of PPh2Cl, provides the new ligand 2-{methyl[2-(bis(diphenylphosphino)methyl)phenyl]amino}ethanol (L2) in high yield.
Resumo:
New cyclic oligomers of dimesitylgermylene carbodiimides (Mes2GeNCN)n (n = 3 (1) and 4 (2)) were synthesized by reactions of dimesityldichlorogermane with either cyanamide in the presence of triethylamine or lithium cyanamide. The reactions always gave 1, the trimer of the hypothetical (Mes2GeN−CN), as the major compound. Higher oligomers 3 (n up to 20−30) also can be isolated, depending on the reaction conditions. In THF solution at room temperature, 2 and 3 slowly isomerize to 1, which seems to be the most stable compound. X-ray analysis of trimer 1 and tetramer 2 shows unstrained tetrahedral germanium atoms and linear diimine linkers.
Resumo:
Heterobimetallic complexes [(P−P)Pt(μ-S−S)Rh(cod)]ClO4 (P−P = (PPh3)2, Ph2P(CH2)3PPh2 (dppp), and Ph2P(CH2)4PPh2 (dppb); S−S = -S(CH2)2S- (EDT), -S(CH2)3S- (PDT), -S(CH2)4S- (BDT), cod = 1,5-cyclooctadiene) reacted with CO to form the carbonyl complexes [(P−P)Pt(μ-S−S)Rh(CO)2]ClO4 and then with PR3 ligands to give [(P−P)Pt(μ-S−S)Rh(CO)(PR3)]ClO4. The binuclear framework of these cod complexes was maintained in the reactions reported. The cod complexes were tested as catalyst precursors in the hydroformylation of styrene. HPNMR in situ studies showed that mononuclear species formed under catalytic conditions.