6 resultados para OPERATING POINT

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the recent years, the unpredictable growth of the Internet has moreover pointed out the congestion problem, one of the problems that historicallyha ve affected the network. This paper deals with the design and the evaluation of a congestion control algorithm which adopts a FuzzyCon troller. The analogyb etween Proportional Integral (PI) regulators and Fuzzycon trollers is discussed and a method to determine the scaling factors of the Fuzzycon troller is presented. It is shown that the Fuzzycon troller outperforms the PI under traffic conditions which are different from those related to the operating point considered in the design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modelling of a nonlinear stochastic dynamical processes from data involves solving the problems of data gathering, preprocessing, model architecture selection, learning or adaptation, parametric evaluation and model validation. For a given model architecture such as associative memory networks, a common problem in non-linear modelling is the problem of "the curse of dimensionality". A series of complementary data based constructive identification schemes, mainly based on but not limited to an operating point dependent fuzzy models, are introduced in this paper with the aim to overcome the curse of dimensionality. These include (i) a mixture of experts algorithm based on a forward constrained regression algorithm; (ii) an inherent parsimonious delaunay input space partition based piecewise local lineal modelling concept; (iii) a neurofuzzy model constructive approach based on forward orthogonal least squares and optimal experimental design and finally (iv) the neurofuzzy model construction algorithm based on basis functions that are Bézier Bernstein polynomial functions and the additive decomposition. Illustrative examples demonstrate their applicability, showing that the final major hurdle in data based modelling has almost been removed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In industrial practice, constrained steady state optimisation and predictive control are separate, albeit closely related functions within the control hierarchy. This paper presents a method which integrates predictive control with on-line optimisation with economic objectives. A receding horizon optimal control problem is formulated using linear state space models. This optimal control problem is very similar to the one presented in many predictive control formulations, but the main difference is that it includes in its formulation a general steady state objective depending on the magnitudes of manipulated and measured output variables. This steady state objective may include the standard quadratic regulatory objective, together with economic objectives which are often linear. Assuming that the system settles to a steady state operating point under receding horizon control, conditions are given for the satisfaction of the necessary optimality conditions of the steady-state optimisation problem. The method is based on adaptive linear state space models, which are obtained by using on-line identification techniques. The use of model adaptation is justified from a theoretical standpoint and its beneficial effects are shown in simulations. The method is tested with simulations of an industrial distillation column and a system of chemical reactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Multinationals have always needed an operating model that works – an effective plan for executing their most important activities at the right levels of their organization, whether globally, regionally or locally. The choices involved in these decisions have never been obvious, since international firms have consistently faced trade‐offs between tailoring approaches for diverse local markets and leveraging their global scale. This paper seeks a more in‐depth understanding of how successful firms manage the global‐local trade‐off in a multipolar world. Design methodology/approach – This paper utilizes a case study approach based on in‐depth senior executive interviews at several telecommunications companies including Tata Communications. The interviews probed the operating models of the companies we studied, focusing on their approaches to organization structure, management processes, management technologies (including information technology (IT)) and people/talent. Findings – Successful companies balance global‐local trade‐offs by taking a flexible and tailored approach toward their operating‐model decisions. The paper finds that successful companies, including Tata Communications, which is profiled in‐depth, are breaking up the global‐local conundrum into a set of more manageable strategic problems – what the authors call “pressure points” – which they identify by assessing their most important activities and capabilities and determining the global and local challenges associated with them. They then design a different operating model solution for each pressure point, and repeat this process as new strategic developments emerge. By doing so they not only enhance their agility, but they also continually calibrate that crucial balance between global efficiency and local responsiveness. Originality/value – This paper takes a unique approach to operating model design, finding that an operating model is better viewed as several distinct solutions to specific “pressure points” rather than a single and inflexible model that addresses all challenges equally. Now more than ever, developing the right operating model is at the top of multinational executives' priorities, and an area of increasing concern; the international business arena has changed drastically, requiring thoughtfulness and flexibility instead of standard formulas for operating internationally. Old adages like “think global and act local” no longer provide the universal guidance they once seemed to.