8 resultados para OBSERVATIONS COSMOLOGICAL INTERPRETATION
em CentAUR: Central Archive University of Reading - UK
Resumo:
The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission.
Resumo:
Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) which exhibit signatures consistent with a magnetic flux rope structure. Techniques for reconstructing flux rope orientation from single-point in situ observations typically assume the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force-free flux rope (FFFR) fitting. In this study, we outline a non-cylindrical magnetic flux rope model, in which the flux rope radius and axial curvature can both vary along the length of the axis. This model is not necessarily intended to represent the global structure of MCs, but it can be used to quantify the error in MC reconstruction resulting from the cylindrical approximation. When the local flux rope axis is approximately perpendicular to the heliocentric radial direction, which is also the effective spacecraft trajectory through a magnetic cloud, the error in using cylindrical reconstruction methods is relatively small (≈ 10∘). However, as the local axis orientation becomes increasingly aligned with the radial direction, the spacecraft trajectory may pass close to the axis at two separate locations. This results in a magnetic field time series which deviates significantly from encounters with a force-free flux rope, and consequently the error in the axis orientation derived from cylindrical reconstructions can be as much as 90∘. Such two-axis encounters can result in an apparent ‘double flux rope’ signature in the magnetic field time series, sometimes observed in spacecraft data. Analysing each axis encounter independently produces reasonably accurate axis orientations with MVA, but larger errors with FFFR fitting.
Resumo:
Observations from the EISCAT VHF incoherent scatter radar system in northern Norway, during a run of the common programme CP-4, reveal a series of polewardpropagating F-region electron density enhancements in the pre-noon sector on 23 November 1999. These plasma density features, which are observed under conditions of a strongly southward interplanetary magnetic field, exhibit a recurrence rate of under 10 min and appear to emanate from the vicinity of the open/closed field-line boundary from where they travel into the polar cap; this is suggestive of their being an ionospheric response to transient reconnection at the dayside magnetopause (flux transfer events). Simultaneous with the density structures detected by the VHF radar, polewardmoving radar auroral forms (PMRAFs) are observed by the Finland HF coherent scatter radar. It is thought that PMRAFs, which are commonly observed near local noon by HF radars, are also related to flux transfer events, although the specific mechanism for the generation of the field-aligned irregularities within such features is not well understood. The HF observations suggest, that for much of their existence, the PMRAFs trace fossil signatures of transient reconnection rather than revealing the footprint of active reconnection itself; this is evidenced not least by the fact that the PMRAFs become narrower in spectral width as they evolve away from the region of more classical, broad cusp scatter in which they originate. Interpretation of the HF observations with reference to the plasma parameters diagnosed by the incoherent scatter radar suggests that as the PMRAFs migrate away from the reconnection site and across the polar cap, entrained in the ambient antisunward flow, the irregularities therein are generated by the presence of gradients in the electron density, with these gradients having been formed through structuring of the ionosphere in the cusp region in response to transient reconnection.
Resumo:
Optical observations of a dayside auroral brightening sequence, by means of all-sky TV cameras and meridian scanning photometers, have been combined with EISCAT ion drift observations within the same invariant latitude-MLT sector. The observations were made during a January 1989 campaign by utilizing the high F region ion densities during the maximum phase of the solar cycle. The characteristic intermittent optical events, covering ∼300 km in east-west extent, move eastward (antisunward) along the poleward boundary of the persistent background aurora at velocities of ∼1.5 km s−1 and are associated with ion flows which swing from eastward to westward, with a subsequent return to eastward, during the interval of a few minutes when there is enhanced auroral emission within the radar field of view. The breakup of discrete auroral forms occurs at the reversal (negative potential) that forms between eastward plasma flow, maximizing near the persistent arc poleward boundary, and strong transient westward flow to the south. The reported events, covering a 35 min interval around 1400 MLT, are embedded within a longer period of similar auroral activity between 0830 (1200 MLT) and 1300 UT (1600 MLT). These observations are discussed in relation to recent models of boundary layer plasma dynamics and the associated magnetosphere-ionosphere coupling. The ionospheric events may correspond to large-scale wave like motions of the low-latitude boundary layer (LLBL)/plasma sheet (PS) boundary. On the basis of this interpretation the observed spot size, speed and repetition period (∼10 min) give a wavelength (the distance between spots) of ∼900 km in the present case. The events can also be explained as ionospheric signatures of newly opened flux tubes associated with reconnection bursts at the magnetopause near 1400 MLT. We also discuss these data in relation to random, patchy reconnection (as has recently been invoked to explain the presence of the sheathlike plasma on closed field lines in the LLBL). In view of the lack of IMF data, and the existing uncertainty on the location of the open-closed field line boundary relative to the optical events, an unambiguous discrimination between the different alternatives is not easily obtained.
Resumo:
Conjunctive measurements made by the Dynamics Explorer 1 and 2 spacecraft on October 22, 1981, under conditions of southward IMF, suggest the existence of a cusp ion injection from a region at the magnetopause with a scale size of ∼ 1/2 to 1 R E . Current signatures observed by the LAPI and MAGB instruments on board DE-2 indicate the existence of a rotation in the magnetic field that is consistent with a filamentary current system. The observed current structure can be interpreted as the ionospheric signature of a flux transfer event (FTE). In addition to this large-scale current structure there exist three small-scale filamentary current pairs. These current pairs close locally and thus, if our interpretation of this event as an FTE is correct, represent the first reported observations of FTE interior structure at low-altitudes.
Resumo:
Calculations using a numerical model of the convection dominated high latitude ionosphere are compared with observations made by EISCAT as part of the UK-POLAR Special Programme. The data used were for 24–25 October 1984, which was characterized by an unusually steady IMF, with Bz < 0 and By > 0; in the calculations it was assumed that a steady IMF implies steady convection conditions. Using the electric field models of Heppner and Maynard (1983) appropriate to By > 0 and precipitation data taken from Spiroet al. (1982), we calculated the velocities and electron densities appropriate to the EISCAT observations. Many of the general features of the velocity data were reproduced by the model. In particular, the phasing of the change from eastward to westward flow in the vicinity of the Harang discontinuity, flows near the dayside throat and a region of slow flow at higher latitudes near dusk were well reproduced. In the afternoon sector modelled velocity values were significantly less than those observed. Electron density calculations showed good agreement with EISCAT observations near the F-peak, but compared poorly with observations near 211 km. In both cases, the greatest disagreement occurred in the early part of the observations, where the convection pattern was poorly known and showed some evidence of long term temporal change. Possible causes for the disagreement between observations and calculations are discussed and shown to raise interesting and, as yet, unresolved questions concerning the interpretation of the data. For the data set used, the late afternoon dip in electron density observed near the F-peak and interpreted as the signature of the mid-latitude trough is well reproduced by the calculations. Calculations indicate that it does not arise from long residence times of plasma on the nightside, but is the signature of a gap between two major ionization sources, viz. photoionization and particle precipitation.
Resumo:
Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.