6 resultados para Nutritionists
em CentAUR: Central Archive University of Reading - UK
Resumo:
The effect of variety, agronomic and environmental factors on the chemical composition and energy value for ruminants and non-ruminants of husked and naked oats grain was studied. Winter oats were grown as experimental plots in each of 2 years on three sites in England. At each site two conventional husked oat cultivars (Gerald and Image) and two naked cultivars (Kynon and Pendragon) were grown. At each site, crops were sown on two dates and all crops were grown with the application of either zero or optimum fertiliser nitrogen. Variety and factors contained within the site + year effect had the greatest influence on the chemical composition and nutritive value of oats, followed by nitrogen ferfiliser treatment. For example, compared with zero nitrogen, the optimum nitrogen fertiliser treatment resulted in a consistent and significant (P < 0.001) increase in crude protein for all varieties at all sites from an average of 95 to 118 g kg(-1) DM, increased the potassium concentration in all varieties from an average of 4.9 to 5.1 g kg(-1) DM (P < 0.01) and reduced total lipid by a small but significant (P < 0.001) amount. Optimum nitrogen increased (P < 0.001) the NDF concentration in the two husked varieties and in the naked variety Pendragon. Naked cultivars were lower in fibre, had considerably higher energy, total lipid, linoleic acid, protein, starch and essential amino acids than the husked cultivars. Thus nutritionists need to be selective in their choice of naked or husked oat depending on the intended dietary use. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper examines the nutritional and veterinary effects of tannins on ruminants and makes some comparisons with non-ruminants. Tannin chemistry per se is not covered and readers are referred to several excellent reviews instead: (a) Okuda T et al. Heterocycles 30:1195-1218 (1990); (b) Ferreira D and Slade D. Nat Prod Rep 19:517-541 (2002); (c) Yoshida T et al. In Studies in Natural Product Chemistry. Elsevier Science, Amsterdam, pp. 395-453 (2000); (d) Khanbabaee K and van Ree T. Nat Prod Rep 18:641-649 (2001); (e) Okuda et al. Phytochemistvy 55:513-529 (2000). The effects of tannins on rumen micro-organisms are also not reviewed, as these have been addressed by others: (a) McSweeney CS et al. Anim Feed Sci Technol 91:83-93 (2001); (b) Smith AH and Mackie RI. Appl Environ Microbiol 70:1104-1115 (2004). This paper deals first with the nutritional effects of tannins in animal feeds, their qualitative and quantitative diversity, and the implications of tannin-protein complexation. It then summarises the known physiological and harmful effects and discusses the equivocal evidence of the bioavailability of tannins. Issues concerning tannin metabolism and systemic effects are also considered. Opportunities are presented on how to treat feeds with high tannin contents, and some lesser-known but successful feeding strategies are highlighted. Recent research has explored the use of tannins for preventing animal deaths from bloat, for reducing intestinal parasites and for lowering gaseous ammonia and methane emissions. Finally, several tannin assays and a hypothesis are discussed that merit further investigation in order to assess their suitability for predicting animal responses. The aim is to provoke discussion and spur readers into new approaches. An attempt is made to synthesise the emerging information for relating tannin structures with their activities. Although many plants with high levels of tannins produce negative effects and require treatments, others are very useful animal feeds. Our ability to predict whether tannin-containing feeds confer positive or negative effects will depend on interdisciplinary research between animal nutritionists and plant chemists. The elucidation of tannin structure-activity relationships presents exciting opportunities for future feeding strategies that will benefit ruminants and the environment within the contexts of extensive, semi-intensive and some intensive agricultural systems. (c) 2006 Society of Chemical Industry
Resumo:
This paper examines the nutritional and veterinary effects of tannins on ruminants and makes some comparisons with non-ruminants. Tannin chemistry per se is not covered and readers are referred to several excellent reviews instead: (a) Okuda T et al. Heterocycles 30:1195-1218 (1990); (b) Ferreira D and Slade D. Nat Prod Rep 19:517-541 (2002); (c) Yoshida T et al. In Studies in Natural Product Chemistry. Elsevier Science, Amsterdam, pp. 395-453 (2000); (d) Khanbabaee K and van Ree T. Nat Prod Rep 18:641-649 (2001); (e) Okuda et al. Phytochemistvy 55:513-529 (2000). The effects of tannins on rumen micro-organisms are also not reviewed, as these have been addressed by others: (a) McSweeney CS et al. Anim Feed Sci Technol 91:83-93 (2001); (b) Smith AH and Mackie RI. Appl Environ Microbiol 70:1104-1115 (2004). This paper deals first with the nutritional effects of tannins in animal feeds, their qualitative and quantitative diversity, and the implications of tannin-protein complexation. It then summarises the known physiological and harmful effects and discusses the equivocal evidence of the bioavailability of tannins. Issues concerning tannin metabolism and systemic effects are also considered. Opportunities are presented on how to treat feeds with high tannin contents, and some lesser-known but successful feeding strategies are highlighted. Recent research has explored the use of tannins for preventing animal deaths from bloat, for reducing intestinal parasites and for lowering gaseous ammonia and methane emissions. Finally, several tannin assays and a hypothesis are discussed that merit further investigation in order to assess their suitability for predicting animal responses. The aim is to provoke discussion and spur readers into new approaches. An attempt is made to synthesise the emerging information for relating tannin structures with their activities. Although many plants with high levels of tannins produce negative effects and require treatments, others are very useful animal feeds. Our ability to predict whether tannin-containing feeds confer positive or negative effects will depend on interdisciplinary research between animal nutritionists and plant chemists. The elucidation of tannin structure-activity relationships presents exciting opportunities for future feeding strategies that will benefit ruminants and the environment within the contexts of extensive, semi-intensive and some intensive agricultural systems. (c) 2006 Society of Chemical Industry
Resumo:
The majority of the UK population is either overweight or obese. Health economists, nutritionists and doctors are calling for the UK to follow the example of other European countries and introduce a tax on soft drinks as a result of the perception that high intakes contribute to diet-related disease. We use a demand model estimated with household-level data on beverage purchases in the UK to investigate the effects of a tax on soft drink consumption. The model is a Quadratic Almost Ideal Demand System, and censoring is handled by applying a double hurdle. Separate models are estimated for low, moderate and high consumers to allow for a differential impact on consumption between these groups. Applying different hypothetical tax rates, we conclude that understanding the nature of substitute/complement relationships is crucial in designing an effective policy as these relationships differ between consumers depending on their consumption level. The overall impact of a soft drink tax on calorie consumption is likely to be small.
Resumo:
This review is an output of the International Life Sciences Institute (ILSI) Europe Marker Initiative, which aims to identify evidence-based criteria for selecting adequate measures of nutrient effects on health through comprehensive literature review. Experts in cognitive and nutrition sciences examined the applicability of these proposed criteria to the field of cognition with respect to the various cognitive domains usually assessed to reflect brain or neurological function. This review covers cognitive domains important in the assessment of neuronal integrity and function, commonly used tests and their state of validation, and the application of the measures to studies of nutrition and nutritional intervention trials. The aim is to identify domain-specific cognitive tests that are sensitive to nutrient interventions and from which guidance can be provided to aid the application of selection criteria for choosing the most suitable tests for proposed nutritional intervention studies using cognitive outcomes. The material in this review serves as a background and guidance document for nutritionists, neuropsychologists, psychiatrists, and neurologists interested in assessing mental health in terms of cognitive test performance and for scientists intending to test the effects of food or food components on cognitive function.