66 resultados para Numerical power performance
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents the evaluation in power consumption of gated clocks pipelined circuits with different register configurations in Virtex-based FPGA devices. Power impact of a gated clock circuitry aimed at reducing flip-flops output rate at the bit level is studied. Power performance is also given for pipeline stages based on the implementation of a double edge-triggered flip-flop. Using a pipelined Cordic Core circuit as an example, this study did not find evidence in power benefits either when gated clock at the bit-level or double-edge triggered flip-flops used when synthesized with FPGA logic resources.
Resumo:
In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT.
Resumo:
The nonlinearity of high-power amplifiers (HPAs) has a crucial effect on the performance of multiple-input-multiple-output (MIMO) systems. In this paper, we investigate the performance of MIMO orthogonal space-time block coding (OSTBC) systems in the presence of nonlinear HPAs. Specifically, we propose a constellation-based compensation method for HPA nonlinearity in the case with knowledge of the HPA parameters at the transmitter and receiver, where the constellation and decision regions of the distorted transmitted signal are derived in advance. Furthermore, in the scenario without knowledge of the HPA parameters, a sequential Monte Carlo (SMC)-based compensation method for the HPA nonlinearity is proposed, which first estimates the channel-gain matrix by means of the SMC method and then uses the SMC-based algorithm to detect the desired signal. The performance of the MIMO-OSTBC system under study is evaluated in terms of average symbol error probability (SEP), total degradation (TD) and system capacity, in uncorrelated Nakagami-m fading channels. Numerical and simulation results are provided and show the effects on performance of several system parameters, such as the parameters of the HPA model, output back-off (OBO) of nonlinear HPA, numbers of transmit and receive antennas, modulation order of quadrature amplitude modulation (QAM), and number of SMC samples. In particular, it is shown that the constellation-based compensation method can efficiently mitigate the effect of HPA nonlinearity with low complexity and that the SMC-based detection scheme is efficient to compensate for HPA nonlinearity in the case without knowledge of the HPA parameters.
Resumo:
In this paper, dual-hop amplify-and-forward (AF) cooperative systems in the presence of high-power amplifier (HPA) nonlinearity at semi-blind relays, are investigated. Based on the modified AF cooperative system model taking into account the HPA nonlinearity, the expression for the output signal-to-noise ratio (SNR) at the destination node is derived, where the interference due to both the AF relaying mechanism and the HPA nonlinearity is characterized. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability (SEP), which is derived using the moment-generating function (MGF) approach, considering transmissions over Nakagami-m fading channels. Numerical results are provided and show the effects of some system parameters, such as the HPA parameters, numbers of relays, quadrature amplitude modulation (QAM) order, Nakagami parameters, on performance.
Resumo:
Nonlinearity of high-power amplifier (HPA) plays a crucial role in the performance of multiple-input multiple-output (MIMO) systems. In this paper, we investigate the performance of MIMO orthogonal space-time block coding (STBC) systems in the presence of nonlinear HPA. Specifically, we assess the impact of HPA nonlinearity on the average symbol error probability (SEP), total degradation (TD), and system capacity of orthogonal STBC in uncorrelated Nakagami-m fading channels. Numerical results are provided and show the effects of several system parameters, such as the output back-off (OBO) of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of quadrature amplitude modulation (QAM), on performance.
Resumo:
We describe a new methodology for comparing satellite radiation budget data with a numerical weather prediction (NWP) model. This is applied to data from the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat-8. The methodology brings together, in near-real time, GERB broadband shortwave and longwave fluxes with simulations based on analyses produced by the Met Office global NWP model. Results for the period May 2003 to February 2005 illustrate the progressive improvements in the data products as various initial problems were resolved. In most areas the comparisons reveal systematic errors in the model's representation of surface properties and clouds, which are discussed elsewhere. However, for clear-sky regions over the oceans the model simulations are believed to be sufficiently accurate to allow the quality of the GERB fluxes themselves to be assessed and any changes in time of the performance of the instrument to be identified. Using model and radiosonde profiles of temperature and humidity as input to a single-column version of the model's radiation code, we conduct sensitivity experiments which provide estimates of the expected model errors over the ocean of about ±5–10 W m−2 in clear-sky outgoing longwave radiation (OLR) and ±0.01 in clear-sky albedo. For the more recent data the differences between the observed and modeled OLR and albedo are well within these error estimates. The close agreement between the observed and modeled values, particularly for the most recent period, illustrates the value of the methodology. It also contributes to the validation of the GERB products and increases confidence in the quality of the data, prior to their release.
Resumo:
This paper describes the design, implementation and characterisation of a contactless power transfer system for rotating applications. The power transfer system is based upon a zero-voltage-switched, full-bridge, DC-DC converter, but utilises a non-standard transformer. This transformer allows power transfer between its primary and secondary windings while also allowing free rotation between these windings. The aim of this research is to develop a solution that could replace mechanical slip-rings in certain applications where a non-contacting system would be advantageous. Based upon the design method presented in this paper, a 2 kW prototype system is constructed. Results obtained from testing the 2 kW prototype are presented and discussed. This discussion considers how the performance of the transformer varies with rotation and also the overall efficiency of the system
Resumo:
The skill of numerical Lagrangian drifter trajectories in three numerical models is assessed by comparing these numerically obtained paths to the trajectories of drifting buoys in the real ocean. The skill assessment is performed using the two-sample Kolmogorov–Smirnov statistical test. To demonstrate the assessment procedure, it is applied to three different models of the Agulhas region. The test can either be performed using crossing positions of one-dimensional sections in order to test model performance in specific locations, or using the total two-dimensional data set of trajectories. The test yields four quantities: a binary decision of model skill, a confidence level which can be used as a measure of goodness-of-fit of the model, a test statistic which can be used to determine the sensitivity of the confidence level, and cumulative distribution functions that aid in the qualitative analysis. The ordering of models by their confidence levels is the same as the ordering based on the qualitative analysis, which suggests that the method is suited for model validation. Only one of the three models, a 1/10° two-way nested regional ocean model, might have skill in the Agulhas region. The other two models, a 1/2° global model and a 1/8° assimilative model, might have skill only on some sections in the region
Resumo:
Many different individuals, who have their own expertise and criteria for decision making, are involved in making decisions on construction projects. Decision-making processes are thus significantly affected by communication, in which a dynamic performance of human intentions leads to unpredictable outcomes. In order to theorise the decision making processes including communication, it is argued here that the decision making processes resemble evolutionary dynamics in terms of both selection and mutation, which can be expressed by the replicator-mutator equation. To support this argument, a mathematical model of decision making has been made from an analogy with evolutionary dynamics, in which there are three variables: initial support rate, business hierarchy, and power of persuasion. On the other hand, a survey of patterns in decision making in construction projects has also been performed through self-administered mail questionnaire to construction practitioners. Consequently, comparison between the numerical analysis of mathematical model and the statistical analysis of empirical data has shown a significant potential of the replicator-mutator equation as a tool to study dynamic properties of intentions in communication.
Resumo:
This paper deals with the energy consumption and the evaluation of the performance of air supply systems for a ventilated room involving high- and low-level supplies. The energy performance assessment is based on the airflow rate, which is related to the fan power consumption by achieving the same environmental quality performance for each case. Four different ventilation systems are considered: wall displacement ventilation, confluent jets ventilation, impinging jet ventilation and a high level mixing ventilation system. The ventilation performance of these systems will be examined by means of achieving the same Air Distribution Index (ADI) for different cases. The widely used high-level supplies require much more fan power than those for low-level supplies for achieving the same value of ADI. In addition, the supply velocity, hence the supply dynamic pressure, for a high-level supply is much larger than for low-level supplies. This further increases the power consumption for high-level supply systems. The paper considers these factors and attempts to provide some guidelines on the difference in the energy consumption associated with high and low level air supply systems. This will be useful information for designers and to the authors' knowledge there is a lack of information available in the literature on this area of room air distribution. The energy performance of the above-mentioned ventilation systems has been evaluated on the basis of the fan power consumed which is related to the airflow rate required to provide equivalent indoor environment. The Air Distribution Index (ADI) is used to evaluate the indoor environment produced in the room by the ventilation strategy being used. The results reveal that mixing ventilation requires the highest fan power and the confluent jets ventilation needs the lowest fan power in order to achieve nearly the same value of ADI.
Resumo:
A numerical study of fluid mechanics and heat transfer in a scraped surface heat exchanger with non-Newtonian power law fluids is undertaken. Numerical results are generated for 2D steady-state conditions using finite element methods. The effect of blade design and material properties, and especially the independent effects of shear thinning and heat thinning on the flow and heat transfer, are studied. The results show that the gaps at the root of the blades, where the blades are connected to the inner cylinder, remove the stagnation points, reduce the net force on the blades and shift the location of the central stagnation point. The shear thinning property of the fluid reduces the local viscous dissipation close to the singularity corners, i.e. near the tip of the blades, and as a result the local fluid temperature is regulated. The heat thinning effect is greatest for Newtonian fluids where the viscous dissipation and the local temperature are highest at the tip of the blades. Where comparison is possible, very good agreement is found between the numerical results and the available data. Aspects of scraped surface heat exchanger design are assessed in the light of the results. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper discusses the architectural design, implementation and associated simulated peformance results of a possible receiver solution fir a multiband Ultra-Wideband (UWB) receiver. The paper concentrates on the tradeoff between the soft-bit width and numerical precision requirements for the receiver versus performance. The required numerical precision results obtained in this paper can be used by baseband designers of cost effective UWB systems using Systein-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).
Resumo:
The Danish Eulerian Model (DEM) is a powerful air pollution model, designed to calculate the concentrations of various dangerous species over a large geographical region (e.g. Europe). It takes into account the main physical and chemical processes between these species, the actual meteorological conditions, emissions, etc.. This is a huge computational task and requires significant resources of storage and CPU time. Parallel computing is essential for the efficient practical use of the model. Some efficient parallel versions of the model were created over the past several years. A suitable parallel version of DEM by using the Message Passing Interface library (AIPI) was implemented on two powerful supercomputers of the EPCC - Edinburgh, available via the HPC-Europa programme for transnational access to research infrastructures in EC: a Sun Fire E15K and an IBM HPCx cluster. Although the implementation is in principal, the same for both supercomputers, few modifications had to be done for successful porting of the code on the IBM HPCx cluster. Performance analysis and parallel optimization was done next. Results from bench marking experiments will be presented in this paper. Another set of experiments was carried out in order to investigate the sensitivity of the model to variation of some chemical rate constants in the chemical submodel. Certain modifications of the code were necessary to be done in accordance with this task. The obtained results will be used for further sensitivity analysis Studies by using Monte Carlo simulation.