206 resultados para Numerical Weather Prediction

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of humidity observations on forecast skill is explored by producing a series of global forecasts using initial data derived from the ERA-40 reanalyses system, in which all humidity data have been removed during the data assimilation. The new forecasts have been compared with the original ERA-40 analyses and forecasts made from them. Both sets of forecasts show virtually identical prediction skill in the extratropics and the tropics. Differences between the forecasts are small and undergo characteristic amplification rate. There are larger differences in temperature and geopotential in the tropics but the differences are small-scale and unstructured and have no noticeable effect on the skill of the wind forecasts. The results highlight the current very limited impact of the humidity observations, used to produce the initial state, on the forecasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a new methodology for comparing satellite radiation budget data with a numerical weather prediction (NWP) model. This is applied to data from the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat-8. The methodology brings together, in near-real time, GERB broadband shortwave and longwave fluxes with simulations based on analyses produced by the Met Office global NWP model. Results for the period May 2003 to February 2005 illustrate the progressive improvements in the data products as various initial problems were resolved. In most areas the comparisons reveal systematic errors in the model's representation of surface properties and clouds, which are discussed elsewhere. However, for clear-sky regions over the oceans the model simulations are believed to be sufficiently accurate to allow the quality of the GERB fluxes themselves to be assessed and any changes in time of the performance of the instrument to be identified. Using model and radiosonde profiles of temperature and humidity as input to a single-column version of the model's radiation code, we conduct sensitivity experiments which provide estimates of the expected model errors over the ocean of about ±5–10 W m−2 in clear-sky outgoing longwave radiation (OLR) and ±0.01 in clear-sky albedo. For the more recent data the differences between the observed and modeled OLR and albedo are well within these error estimates. The close agreement between the observed and modeled values, particularly for the most recent period, illustrates the value of the methodology. It also contributes to the validation of the GERB products and increases confidence in the quality of the data, prior to their release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to assist in comparing the computational techniques used in different models, the authors propose a standardized set of one-dimensional numerical experiments that could be completed for each model. The results of these experiments, with a simplified form of the computational representation for advection, diffusion, pressure gradient term, Coriolis term, and filter used in the models, should be reported in the peer-reviewed literature. Specific recommendations are described in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate model ensembles are widely heralded for their potential to quantify uncertainties and generate probabilistic climate projections. However, such technical improvements to modeling science will do little to deliver on their ultimate promise of improving climate policymaking and adaptation unless the insights they generate can be effectively communicated to decision makers. While some of these communicative challenges are unique to climate ensembles, others are common to hydrometeorological modeling more generally, and to the tensions arising between the imperatives for saliency, robustness, and richness in risk communication. The paper reviews emerging approaches to visualizing and communicating climate ensembles and compares them to the more established and thoroughly evaluated communication methods used in the numerical weather prediction domains of day-to-day weather forecasting (in particular probabilities of precipitation), hurricane and flood warning, and seasonal forecasting. This comparative analysis informs recommendations on best practice for climate modelers, as well as prompting some further thoughts on key research challenges to improve the future communication of climate change uncertainties.