13 resultados para Nucleophilic attack
em CentAUR: Central Archive University of Reading - UK
Resumo:
The development of new methods for the efficient synthesis of aziridines has been of considerable interest to researchers for more than 60 years, but no single method has yet emerged as uniformly applicable, especially for asymmetric synthesis of chiral aziridines. One method which has been intensely examined and expanded of late involves the nucleophilic addition to imines by anions bearing a-leaving groups; by analogy with the glycidate epoxide synthesis, these processes are often described as "aza-Darzens reactions". This Microreview gives a summary of the area, with a focus on contemporary developments. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
Nucleophilic attack of (triphenylphosphonio) cyclopentadienide on the dichlorodiazomethane-tungsten complex trans[ BrW(dppe)(2)(N2CCl2)]PF6 [dppe is 1,2-bis(diphenylphosphino) ethane] results in C-C bond formation and affords the title compound, trans-[W(C24H18ClN2P)Br(C26H24P2)(2)]PF6 center dot 0.6CH(2)Cl(2). This complex, bis[1,2- bis(diphenylphosphino)ethane] bromido{chloro[3-(triphenylphosphonio) cyclopentadienylidene] diazomethanediido} tungsten hexafluorophosphate dichloromethane 0.6-solvate, contains the previously unknown ligand chloro[3-(triphenylphosphonio) cyclopentadienylidene] diazomethane. Evidence from bond lengths and torsion angles indicates significant through-ligand delocalization of electron density from tungsten to the nominally cationic phosphorus(V) centre. This structural analysis clearly demonstrates that the tungsten-dinitrogen unit is a powerful pi-electron donor with the ability to transfer electron density from the metal to a distant acceptor centre through an extended conjugated ligand system. As a consequence, complexes of this type could have potential applications as nonlinear optical materials and molecular semiconductors.
Resumo:
Highly strained macrocyclic ether-ketones obtained by nickel-catalyzed cyclization of linear precursor oligomers undergo ring-opening polyinerization via ether exchange in the presence of nucleophilic initiators such as fluoride or phenoxide anions. Strain enthapies of these macrocycles, from DSC analyses of their exothermic ring-opening polymerization are in the range 50-90 kJ mol(-1). Melt-phase polymerization generally affords slightly cross-linked materials, but solution-phase polymerization at high macrocycle concentrations gives fully soluble, high molar mass polymers with inherent viscosities of up to 1.78 dL g(-1). Sequence-analysis of the resulting polymers by C-13 NMR shows that alternating or random monomer sequences may be obtained, depending on whether one or both aromatic rings adjacent to the ether linkages are activated toward nucleophilic attack.
Resumo:
We report herein the first synthesis of chiral derivatives possessing the 1,4-thiazinone core. As predicted, the thiolactone is more susceptible to nucleophilic attack than the equivalent lactone system.
Resumo:
An outdoor experiment was conducted to increase understanding of apical leaf necrosis in the presence of pathogen infection. Holcus lanatus seeds and Puccinia coronata spores were collected from two adjacent and otherwise similar habitats with differing long-term N fertilization levels. After inoculation, disease and necrosis dynamics were observed during the plant growing seasons of 2003 and 2006. In both years high nutrient availability resulted in earlier disease onset, a higher pathogen population growth rate, earlier physiological apical leaf necrosis onset and a reduced time between disease onset and apical leaf necrosis onset. Necrosis rate was shown to be independent of nutrient availability. The results showed that in these nutrient-rich habitats H. lanatus plants adopted necrosis mechanisms which wasted more nutrients. There was some indication that these necrosis mechanisms were subject to local selection pressures, but these results were not conclusive. The findings of this study are consistent with apical leaf necrosis being an evolved defence mechanism.
Resumo:
Question: What are the life-history costs for a predatory insect of surviving parasitoid attack, and can parasitoid attack alter predator-prey interactions? Hypotheses: Survivorship is influenced by host age. Hosts that suffer parasitoid attack grow more slowly and consume fewer prey. Those that survive attack are smaller as adults and show reduced survivorship. Organisms: The aphidophagous hoverfly Episyrphus balteatus, its endoparasitoid wasp Diplazon laetatorius and its prey, the pea aphid, Acyrthosiphon pisum. Site of experiments: All experiments were conducted in controlled temperature rooms and chambers in the laboratory. Methods: Episyrphus balteatus larvae of each instar were exposed to attack by Diplazon laetatorius, then dissected to measure the encapsulation response (a measure of immunity). Second instar larvae were either attacked or not attacked by D. laetatorius. Their development rates and numbers of prey consumed were noted. The size and survivorship of surviving (immune) and control hoverflies were compared following eclosion. Conclusions: Successful immune response increased with larval age (first instar 0%, second instar 40%, third instar 100% survival). Second instar larvae that successfully resisted parasitoid attack were larger as pupae (but not as adults) and showed reduced adult survivorship. Female adult survivors were more likely than male survivors to have died within 16 days of eclosion, but there was no difference between unattacked male and female control hoverflies. Attacked larvae, irrespective of immune status, consumed fewer aphids than unattacked individuals. Episyrphus balteatus suffers significant costs of resisting parasitoid attack, and parasitoid attack can reduce the top-down effects of an insect predator, irrespective of whether the host mounts an immune response or not.
Resumo:
Costs of resistance are widely assumed to be important in the evolution of parasite and pathogen defence in animals, but they have been demonstrated experimentally on very few occasions. Endoparasitoids are insects whose larvae develop inside the bodies of other insects where they defend themselves from attack by their hosts' immune systems (especially cellular encapsulation). Working with Drosophila melanogaster and its endoparasitoid Leptopilina boulardi, we selected for increased resistance in four replicate populations of flies. The percentage of flies surviving attack increased from about 0.5% to between 40% and 50% in five generations, revealing substantial additive genetic variation in resistance in the field population from which our culture was established. In comparison with four control lines, flies from selected lines suffered from lower larval survival under conditions of moderate to severe intraspecific competition.
Resumo:
1. The evolution of host resistance to parasitoid attack will be constrained by two factors: the costs of the ability to defend against attack, and the costs of surviving actual attack. These factors have been investigated using Drosophila melanogaster and its parasitoids as a model system. The costs of defensive ability are expressed as a trade-off with larval competitive ability, whereas the costs of actual defence are exhibited in terms of reduced adult fecundity and size. 2. The costs of actual defence may be ameliorated by the host-choice decisions made by Pachycrepoideus vindemiae, a pupal parasitoid. If larvae that have successfully encapsulated a parasitoid develop into poorer quality hosts, then these may be rejected by ovipositing pupal parasitoids. 3. Pupae developing from larvae that have encapsulated the parasitoid Asobara tabida are smaller and have relatively thinner puparia. Thinner puparia are likely to be associated with a reduction in mechanical strength and possibly with a decrease in desiccation tolerance. 4. Pachycrepoideus vindemiae that develop in capsule-bearing pupae are smaller than those that emerge from previously unattacked hosts. This supports the prediction that ovipositing female P. vindemiae should avoid attacking capsule-bearing hosts. However, in choice experiments with 1-day-old pupae, P. vindemiae females oviposited preferentially in hosts containing a capsule, whereas there was no preference found with 4-day-old hosts. This appears to be a maladaptive host choice decision, as the female pupal parasitoids are preferentially attacking hosts that will result in a reduction of their own fitness. 5. The increased likelihood of attack by a pupal parasitoid is another cost of actual defence against larval parasitoid attack.
Resumo:
The ability to resist or avoid natural enemy attack is a critically important insect life history trait, yet little is understood of how these traits may be affected by temperature. This study investigated how different genotypes of the pea aphid Acyrthosiphon pisum Harris, a pest of leguminous crops, varied in resistance to three different natural enemies (a fungal pathogen, two species of parasitoid wasp and a coccinellid beetle), and whether expression of resistance was influenced by temperature. Substantial clonal variation in resistance to the three natural enemies was found. Temperature influenced the number of aphids succumbing to the fungal pathogen Erynia neoaphidis Remaudiere & Hermebert, with resistance increasing at higher temperatures (18 vs. 28degreesC). A temperature difference of 5degreesC (18 vs. 23degreesC) did not affect the ability of A. pisum to resist attack by the parasitoids Aphidius ervi Haliday and A. eadyi Stary Gonzalez & Hall. Escape behaviour from foraging coccinellid beetles (Hippodamia convergens Guerin-Meneville) was not directly influenced by aphid clone or temperature (16 vs. 21degreesC). However, there were significant interactions between clone and temperature (while most clones did not respond to temperature, one was less likely to escape at 16degreesC), and between aphid clone and ladybird presence (some clones showed greater changes in escape behaviour in response to the presence of foraging coccinellids than others). Therefore, while larger temperature differences may alter interactions between Acyrthosiphon pisum and an entomopathogen, there is little evidence to suggest that smaller changes in temperature will alter pea aphid-natural enemy interactions.
Resumo:
Rh-I-terpyridine complexes have been unambiguously formed for the first time. The 2,21:6',2"-terpyridine (tpy), 4'-chloro-2,2':6',2"-terpyridine (4'-Cl-tpy) and 4'-(tert-butyldimethylsilyl-ortho-carboranyl)-2,2':6',2"-terpyridine (carboranyl-tpy) ligands were used for successful syntheses and characterisation of the corresponding Rh-I complexes with halide coligands, [Rh(X)(4'-Y-terpyridine)] (X = Cl, Y = H, Cl, carboranyl; X = Br, Y = H). All four neutral Rh-tpy complexes are square planar, with Rh-X bonds in the plane of the 4'-Y-terpyridine ligands. Full characterisation of these dark blue, highly air-sensitive compounds was hampered by their poor solubility in various organic solvents. This is mainly due to the formation of pi-stacked aggregates, as evidenced by the crystal structure of [Rh(Cl)(tpy)]; in addition, [Rh(Cl)(carboranyl-tpy)] merely forms discrete dimers. The (bonding) properties of the novel Rh-I-terpyridine complexes have been studied with single-crystal X-ray diffraction, (time-dependent) density functional theoretical (DFT) calculations, far-infrared spectroscopy, electronic absorption spectroscopy and cyclic voltammetry. From DFT calculations, the HOMO of the studied Rh-I-terpyridine complexes involves predominantly the metal centre, while the LUMO resides on the terpyridine ligand. Absorption bands of the studied complexes in the visible region (400-900 nm) can be assigned to MLCT and MLCT/XLCT transitions. The relatively low oxidation potentials of [Rh(X)(tpy)] (X = Cl, Br) point to a high electron density on the metal centre. This makes the Rh-I-terpyridine complexes strongly nucleophilic and (potentially) highly reactive towards various (small) substrate molecules containing carbon-halide bonds.