39 resultados para Nuclear saline water conversion plants.

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now accepted that some human-induced climate change is unavoidable. Potential impacts on water supply have received much attention, but relatively little is known about the concomitant changes in water quality. Projected changes in air temperature and rainfall could affect river flows and, hence, the mobility and dilution of contaminants. Increased water temperatures will affect chemical reaction kinetics and, combined with deteriorations in quality, freshwater ecological status. With increased flows there will be changes in stream power and, hence, sediment loads with the potential to alter the morphology of rivers and the transfer of sediments to lakes, thereby impacting freshwater habitats in both lake and stream systems. This paper reviews such impacts through the lens of UK surface water quality. Widely accepted climate change scenarios suggest more frequent droughts in summer, as well as flash-flooding, leading to uncontrolled discharges from urban areas to receiving water courses and estuaries. Invasion by alien species is highly likely, as is migration of species within the UK adapting to changing temperatures and flow regimes. Lower flows, reduced velocities and, hence, higher water residence times in rivers and lakes will enhance the potential for toxic algal blooms and reduce dissolved oxygen levels. Upland streams could experience increased dissolved organic carbon and colour levels, requiring action at water treatment plants to prevent toxic by-products entering public water supplies. Storms that terminate drought periods will flush nutrients from urban and rural areas or generate acid pulses in acidified upland catchments. Policy responses to climate change, such as the growth of bio-fuels or emission controls, will further impact freshwater quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study explores for the first time, the effectiveness of photocatalytic oxidation of. humic acid (HA) in the increasingly important highly saline water. TiO2 (Degussa P25), TiO2 (Anatase), TiO2 (Rutile), TiO2 (Mesoporous) and ZnO dispersions were used as catalysts employing a medium pressure mercury lamp. The effect of platinum loading on P25 and zinc oxide was also investigated. The zinc oxide with 0.3% platinum loading was the most efficient catalyst. The preferred medium for the degradation of HA using ZnO is alkaline, whereas for TiO2 it is acidic. In addition, a comparative study of HA decomposition in artificial seawater (ASW) and natural seawater (NSW) is reported, and the surface areas and band gaps of the catalysts employed were also determined. A spectrophotometric method was used to estimate the extent of degradation of HA. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation into the speciation and occurrence of nine haloacetic acids (HAAs) was conducted during the period of April 2007 to March 2008 and involved three drinking water supply systems in England, which were chosen to represent a range of source water conditions; these were an upland surface water, a lowland surface water and a groundwater. Samples were collected seasonally from the water treatment plants and at different locations in the distribution systems. The highest HAA concentrations occurred in the upland surface water system, with an average total HAA concentration of 21.3 μg/L. The lowest HAA levels were observed in the groundwater source, with a mean concentration of 0.6 μg/L. Seasonal variations were significant in the HAA concentrations; the highest total HAA concentrations were found during the autumn, when the concentrations were approximately two times higher than in winter and spring. HAA speciation varied among the water sources, with dichloroacetic acid and trichloroacetic acid dominant in the lowland surface water system and brominated species dominant in the upland surface water system. There was a strong correlation between trihalomethanes and HAAs when considering all samples from the three systems in the same data set (r2=0.88); however, the correlation was poor/moderate when considering each system independently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the role of the Arctic Ocean Atlantic water (AW) in modifying the Laptev Sea shelf bottom hydrography on the basis of historical records from 1932 to 2008, field observations carried out in April–May 2008, and 2002–2009 cross‐slope measurements. A climatology of bottom hydrography demonstrates warming that extends offshore from the 30–50 m depth contour. Bottom layer temperature‐time series constructed from historical records links the Laptev Sea outer shelf to the AW boundary current transporting warm and saline water from the North Atlantic. The AW warming of the mid‐1990s and the mid‐2000s is consistent with outer shelf bottom temperature variability. For April–May 2008 we observed on‐shelf near‐bottom warm and saline water intrusions up to the 20 m isobath. These intrusions are typically about 0.2°C warmer and 1–1.5 practical salinity units saltier than ambient water. The 2002–2009 cross‐slope observations are suggestive for the continental slope upward heat flux from the AW to the overlying low‐halocline water (LHW). The lateral on‐shelf wind‐driven transport of the LHW then results in the bottom layer thermohaline anomalies recorded over the Laptev Sea shelf. We also found that polynya‐induced vertical mixing may act as a drainage of the bottom layer, permitting a relatively small portion of the AW heat to be directly released to the atmosphere. Finally, we see no significant warming (up until now) over the Laptev Sea shelf deeper than 10–15 m in the historical record. Future climate change, however, may bring more intrusions of Atlantic‐modified waters with potentially warmer temperature onto the shelf, which could have a critical impact on the stability of offshore submarine permafrost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulses of potassium (K+) applied to columns of repacked calcium (Ca2+) saturated soil were leached with distilled water or calcium chloride (CaCl2) solutions of various concentrations at a rate of 12 mm h(-1). With increased Ca2+ concentration, the rate of movement of K+ increased, as did the concentration of K+ in the displaced pulse, which was less dispersed. The movement of K+ in calcite-amended soil leached with water was at a similar rate to that of the untreated soil leached with 1 mM CaCl2, and in soil containing gypsum, movement was similar to that leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 0.4 and 15 mM respectively the expected values for the dissolution of the two amendments. Soil containing native K+ was leached with distilled water or CaCl2 solutions. The amount of K+ leached increased as Ca2+ concentration increased, with up to 34% of the exchangeable K+ being removed in five pore volumes of 15 mM CaCl2. Soil amended with calcite and leached with water lost K+ at a rate between that for leaching the unamended soil with 1 mM CaCl2 and that with water. Soil containing gypsum and leached with water lost K+ at a similar rate to unamended soil leached with 15 mM CaCl2. The presence of Ca2+ in irrigation water and of soil minerals able to release Ca2+ are of importance in determining the amounts of K+ leached from soils. The LEACHM model predicted approximately the displacement of K+, and was more accurate with higher concentrations of displacing solution. The shortcomings of this model are its inability to account for rate-controlled processes and the assumption that K+:Ca2+ exchange during leaching can be described using a constant adsorption coefficient. As a result, the pulse is predicted to appear a little earlier and the following edge has less of a tail than chat measured. In practical agriculture, the model will be more useful in soils containing gypsum or leached with saline water than in either calcareous or non-calcareous soils leached with rainwater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing frequency and magnitude of warmer days during the summer in the UK, bedding plants which were a traditional part of the urban green landscape are perceived as unsustainable and water-demanding. During recent summers when bans on irrigation have been imposed, use and sales of bedding plants have dropped dramatically having a negative financial impact on the nursery industry. Retaining bedding species as a feature in public and even private spaces in future may be conditional on them being managed in a manner that minimises their water use. Using Petunia x hybrida ‘Hurrah White’ we aimed to discover which irrigation approach was the most efficient for maintaining plants ornamental quality (flower numbers, size and longevity), shoot and root growth under water deficit and periods of complete water withdrawal. Plants were grown from plugs for 51 days in wooden rhizotrons (0.35 m (h) x 0.1 m (w) x 0.065 m (d)); the rhizotrons’ front comprised clear Perspex which enabled us to monitor root growth closely. Irrigation treatments were: 1. watering with the amount which constitutes 50% of container capacity by conventional surface drip-irrigation (‘50% TOP’); 2. 50% as sub-irrigation at 10 cm depth (‘50% SUB’); 3. ‘split’ irrigation: 25% as surface drip- and 25% as sub-irrigation at 15 cm depth (‘25/25 SPLIT’); 4. 25% as conventional surface drip-irrigation (‘25% TOP’). Plants were irrigated daily at 18:00 apart from days 34-36 (inclusive) when water was withdrawn for all the treatments. Plants in ‘50% SUB’ had the most flowers and their size was comparable to that of ‘50% TOP’. Differences between treatments in other ‘quality’ parameters (height, shoot number) were biologically small. There was less root growth at deeper soil surface levels for ‘50% TOP’ which indicated that irrigation methods like ‘50% SUB’ and ‘25/25 SPLIT’ and stronger water deficits encouraged deeper root growth. It is suggested that sub-irrigation at 10 cm depth with water amounts of 50% container capacity would result in the most root growth with the maximum flowering for Petunia. Leaf stomatal conductance appeared to be most sensitive to the changes in substrate moisture content in the deepest part of the soil profile, where most roots were situated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consolidation and bond strength of rafted sea ice were investigated through a series of experiments undertaken in the Ice Physics Laboratory at the UCL. To simulate a section of rafted sea ice, blocks of laboratory grown saline ice were stacked in an insulated tank with spacers between adjacent blocks to allow saline water to flood in. The rate of consolidation was then monitored using a combination of temperature readings recorded in the ice and liquid layer, salinity measurements of the liquid layer, and cores taken at specific times of interest. Two states of consolidation were observed: thermodynamic consolidation where the ice blocks were physically bonded but the bond strength was weak, and mechanical consolidation where the bond had reached full strength. Results showed that the rafted ice had physically bonded in less than a day, however it took many more days (6 to 30 depending on the environmental conditions) for the bond to reach maximum strength. Increasing the thickness of the ice, the salinity of the water and the inter-block gap size all increased the consolidation time. Once consolidated, ice cores were taken and sheared using the asymmetric four-point bending method to measure the strength of the bond between the ice blocks. These were then compared to the shear strength of solid ice blocks simulating level sea ice. Our results show that the shear strength of the bond between the rafted ice blocks is about 30% weaker than that of level ice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

∆14Catm has been estimated as 420 ± 80‰ (IntCal09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. ∆14Catm is a function of both cosmogenic production in the high atmosphere and of carbon cycling and partitioning in the Earth system. 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200‰ in the LGM. The remaining 220‰ have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010, 2011) proposed to explain most of the difference in pCO2atm and δ13C between glacial and interglacial times as a result of brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that contribute to high carbon storage in the deep ocean. During glacial times, the sinking of brines is enhanced and more carbon is stored in the deep ocean, lowering pCO2atm. Moreover, the sinking of brines induces increased stratification in the Southern Ocean, which keeps the deep ocean well isolated from the surface. Such an isolated ocean reservoir would be characterized by a low ∆14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al. 2010). The degassing of this carbon with low ∆14C would then reduce ∆14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both the sinking of brine and cosmogenic production, alongside iron fertilization mechanisms, to explain changes in ∆14Catm during the last deglaciation. In our simulations, not only is the sinking of brine mechanism consistent with past ∆14C data, but it also explains most of the differences in pCO2atm and ∆14Catm between the LGM and preindustrial times. Finally, this study represents the first time to our knowledge that a model experiment explains glacial-interglacial differences in pCO2atm, δ13C, and ∆14C together with a coherent LGM climate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Terpene synthases are responsible for the biosynthesis of the complex chemical defense arsenal of plants and microorganisms. How do these enzymes, which all appear to share a common terpene synthase fold, specify the many different products made almost entirely from one of only three substrates? Elucidation of the structure of 1,8-cineole synthase from Salvia fruticosa (Sf-CinS1) combined with analysis of functional and phylogenetic relationships of enzymes within Salvia species identified active-site residues responsible for product specificity. Thus, Sf-CinS1 was successfully converted to a sabinene synthase with a minimum number of rationally predicted substitutions, while identification of the Asn side chain essential for water activation introduced 1,8-cineole and alpha-terpineol activity to Salvia pomifera sabinene synthase. A major contribution to product specificity in Sf-CinS1 appears to come from a local deformation within one of the helices forming the active site. This deformation is observed in all other mono- or sesquiterpene structures available, pointing to a conserved mechanism. Moreover, a single amino acid substitution enlarged the active-site cavity enough to accommodate the larger farnesyl pyrophosphate substrate and led to the efficient synthesis of sesquiterpenes, while alternate single substitutions of this critical amino acid yielded five additional terpene synthases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Artemisinic acid labeled with both C-13 and H-2 at the 15-position has been fed to intact plants of Artemisia annua via the cut stem, and its in vivo transformations studied by 1D- and 2D-NMR spectroscopy. Seven labeled metabolites have been isolated, all of which are known as natural products from this species. The transformations of artemisinic acid-as observed both for a group of plants, which was kept alive by hydroponic administration of water and for a group, which was allowed to die by desiccation-closely paralleled those, which have been recently described for its 11,13-dihydro analog, dihydroartemisinic acid. It seems likely therefore that similar mechanisms, involving spontaneous autoxidation of the Delta(4,5) double bond in both artemisinic acid and dihydroartemisinic acid and subsequent rearrangements of the resultant allylic hydroperoxides, may be involved in the biological transformations, which are undergone by both compounds. All of the sesquiterpene metabolites, which were obtained from in vivo transformations of artemisinic acid retained their unsaturation at the 11,13-position, and there was no evidence for conversion into any 11,13-dihydro metabolite, including artemisinin, the antimalarial drug, which is produced by A. annua. This observation led to the proposal of a unified biosynthetic scheme, which accounts for the biogenesis of many of the amorphane and cadinane sesquiterpenes that have been isolated as natural products from A. annua. In this scheme, there is a bifurcation in the biosynthetic pathway starting from amorpha-4,11-diene leading to either artemisinic acid or dihydroartemisinic acid; these two committed precursors are then, respectively, the parents for the two large families of highly oxygenated 11,13-dehydro and 11,13-dihydro sesquiterpene metabolites, which are known from this species. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The monitoring of water uptake in plants is becoming increasingly important. Optical sensors offer considerable advantages over conventional methods and several sensors have been developed including an optical potometer that monitors water uptake from individual roots, the detection of xylem cavitation using audio acoustic emissions with an interferometric force feedback microphone, and an optical fiber displacement transducer that detects changes in leaf thickness in relation to leaf-water potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The trans-[Cu2L2Cl2] (1), and cis-[Cu2L2Cl2]·H2O (2) isomers of a diphenoxido bridged Cu2O2 core have been synthesized using a tridentate reduced Schiff base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol. The geometry around Cu(II) is intermediate between square pyramid and trigonal bipyramid (Addison parameter, tau = 0.463) in 1 but nearly square pyramidal (tau = 0.049) in 2. The chloride ions are coordinated to Cu(II) and are trans oriented in 1 but cis oriented in 2. Both isomers have been optimized using density functional theory (DFT) calculations and it is found that the trans isomer is 7.2 kcal mol(-1) more favorable than the cis isomer. However, the hydrogen bonding interaction of crystallized water molecule with chloride ions compensates for the energy difference and stabilizes the cis isomer. Both complexes have been converted to a very rare phenoxido-azido bridged trinuclear species, [Cu3L2(mu(1,1)-N-3)(2)(H2O)(2)(ClO4)(2)] (3) which has also been characterized structurally. All the complexes are antiferromagnetically coupled but the magnitude of the coupling constants are significantly different (J = -156.60, -652.31, and -31.54 cm(-1) for 1, 2, and 3 respectively). Density functional theory (DFT) calculations have also been performed to gain further insight into the qualitative theoretical interpretation on the overall magnetic behavior of the complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing levels of CO2 and H+ proton in the rhizosphere from some legumes may play an important role in calcite dissolution of calcareous salt affected soils. Soils planted with white and brown varieties of cowpea (Vigna unguiculata L.) and hyacinth bean (Dolichos lablab L.) relying on either fertilizer N (KNO3) or N-fixation were compared against soils to which gypsum was applied and a control without plants and gypsum application to study the possibility of Ca2+ release from calcite and Na+ leaching. As compared to plants relying on inorganic N, leachates from all pore volumes (0·5, 1·0, 1·5, 2·0 pore volume) in lysimeters planted with N-fixing hyacinth bean contained significantly higher concentrations of HCO with lower concentrations from lysimeters planted with white cowpea relying on N-fixation. However, the lowest concentrations of HCO were recorded in the gypsum and control treatments. In initial leaching, lysimeters planted with N-fixing plants maintained similar leachate Ca2+ and Na+ concentrations compared to gypsum amended soils. However, gypsum amended soils were found to have a prolonged positive effect on Na+ removal. It might be concluded that some legumes that are known to fix N in calcareous salt affected soils may be an alternative ameliorant to the extremely expensive gypsum through calcite solubilization and a consequent release of Ca2+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.