11 resultados para Notation musicale. aquitaine
em CentAUR: Central Archive University of Reading - UK
Resumo:
The field of Molecular Spectroscopy was surveyed in order to determine a set of conventions and symbols which are in common use in the spectroscopic literature. This document, which is Part I in a series, establishes the notations and conventions used for general spectroscopic notations and deals with quantum mechanics, quantum numbers (vibrational states, angular momentum and energy levels), spectroscopic transitions, and miscellaneous notations (e.g. spectroscopic terms). Further parts will follow, dealing inter alia with symmetry notation, permutation and permutation-inversion symmetry notation, vibration-rotation spectroscopy and electronic spectroscopy.
Resumo:
The field of Molecular Spectroscopy was surveyed in order to determine a set of conventions and symbols which are in common use in the spectroscopic literature. This document, which is Part 2 in a series, establishes the notations and conventions used for the description of symmetry in rigid molecules, using the Schoenflies notation. It deals firstly with the symmetry operators of the molecular point groups (also drawing attention to the difference between symmetry operators and elements). The conventions and notations of the molecular point groups are then established, followed by those of the representations of these groups as used in molecular spectroscopy. Further parts will follow, dealing inter alia with permutation and permutation-inversion symmetry notation, vibration-rotation spectroscopy and electronic spectroscopy.
Resumo:
The field of Molecular Spectroscopy was surveyed in order to determine a set of conventions and symbols which are in common use in the spectroscopic literature. This document, which is Part 3 in a series, deals with symmetry notation referring to groups that involve nuclear permutations and the inversion operation. Further parts will follow, dealing inter alia with vibration-rotation spectroscopy and electronic spectroscopy.
Resumo:
In this article Geoff Tennant puts forward a range of reasons for using mathematical notation, emphasising the need to allow children learning it time and space to come to terms with it. Examples are given in furthering the argument that the time to introduce notation is after the concept is already fully understood.
Resumo:
Previous work has established the value of goal-oriented approaches to requirements engineering. Achieving clarity and agreement about stakeholders’ goals and assumptions is critical for building successful software systems and managing their subsequent evolution. In general, this decision-making process requires stakeholders to understand the implications of decisions outside the domains of their own expertise. Hence it is important to support goal negotiation and decision making with description languages that are both precise and expressive, yet easy to grasp. This paper presents work in progress to develop a pattern language for describing goal refinement graphs. The language has a simple graphical notation, which is supported by a prototype editor tool, and a symbolic notation based on modal logic.
Resumo:
The brace notation, introduced by Allen and Csaszar (1993, J. chem. Phys., 98, 2983), provides a simple and compact way to deal with derivatives of arbitrary non-tensorial quantities. One of its main advantages is that it builds the permutational symmetry of the derivatives directly into the formalism. The brace notation is applied to formulate the general nth-order Cartesian derivatives of internal coordinates, and to provide closed forms for general, nth-order transformation equations of anharmonic force fields, expressed as Taylor series, from internal to Cartesian or normal coordinate spaces.
Resumo:
A double minimum six-dimensional Potential energy surface (PES) is determined in symmetry coordinates for the most stable rhombic (D-2h) B-4 isomer in its (1)A(g) electronic ground state by fitting to energies calculated ab initio. The PES exhibits a barrier to the D-4h square structure of 255 cm(-1). The vibrational levels (J=0) are calculated variationally using an approach which involves the Watson kinetic energy operator expressed in normal coordinates. The pattern of about 65 vibrational levels up to 1600 cm-1 for all stable isotopomers is analyzed. Analogous to the inversion in ammonia-like molecules, the rhombus rearrangements lead to splittings of the vibrational levels. In B-4 it is the B-1g (D-4h mode which distorts the square molecule to its planar rhombic form. The anharmonic fundamental vibrational transitions of B-11(4) are calculated to be (splittings in parentheses): G(O) = 2352(22) cm(-1), v(1)(A(1g)) - 1136(24) cm(-1,) v(2)(B-1g)=209(144) cm(-1) v(3)(B-2g)=1198(19)cm(-1), v(4)(B-2u) = 271(24) cm(-1), and v(5) (E-u) = 1030( 166) cm(-1) (D-4h notation). Their variations in all stable isotoporners were investigated. Due to the presence of strong anharmonic resonances between the B-1g in-plane distortion and the B-2u, out-of-plane bending modes. the hiaher overtones and combination levels are difficult to assign unequivocally. (C) 2005 American Institute of Physics.
Resumo:
Some poems are inherently dramatic due to their narrative content or the events, characters, places and emotions that are their subject. Others have the potential for dramatisation because of some aural or visual quality of their poetic form. However, if dramatising poems is to be meaningful and effective children need to be taught something about the art form of drama rather than just being left to their own devices. This chapter explores the learning potential of considering the printed text of a poem as a notation of sound, movement, gesture and use of space. The chapter recognises a progression from simple nursery rhymes to the sophisticated use of poetic language in different types of literature that is mirrored in the journey from infants’ clapping games to the dramatic juxtaposition of aural and visual images in theatre and the performing arts.
The capability-affordance model: a method for analysis and modelling of capabilities and affordances
Resumo:
Existing capability models lack qualitative and quantitative means to compare business capabilities. This paper extends previous work and uses affordance theories to consistently model and analyse capabilities. We use the concept of objective and subjective affordances to model capability as a tuple of a set of resource affordance system mechanisms and action paths, dependent on one or more critical affordance factors. We identify an affordance chain of subjective affordances by which affordances work together to enable an action and an affordance path that links action affordances to create a capability system. We define the mechanism and path underlying capability. We show how affordance modelling notation, AMN, can represent affordances comprising a capability. We propose a method to quantitatively and qualitatively compare capabilities using efficiency, effectiveness and quality metrics. The method is demonstrated by a medical example comparing the capability of syringe and needless anaesthetic systems.