19 resultados para Northeast portion of the Paraná
em CentAUR: Central Archive University of Reading - UK
Resumo:
We have performed microarray hybridization studies on 40 clinical isolates from 12 common serovars within Salmonella enterica subspecies I to identify the conserved chromosomal gene pool. We were able to separate the core invariant portion of the genome by a novel mathematical approach using a decision tree based on genes ranked by increasing variance. All genes within the core component were confirmed using available sequence and microarray information for S. enterica subspecies I strains. The majority of genes within the core component had conserved homologues in Escherichia coli K-12 strain MG1655. However, many genes present in the conserved set which were absent or highly divergent in K-12 had close homologues in pathogenic bacteria such as Shigella flexneri and Pseudomonas aeruginosa. Genes within previously established virulence determinants such as SPI1 to SPI5 were conserved. In addition several genes within SPI6, all of SPI9, and three fimbrial operons (fim, bcf, and stb) were conserved within all S. enterica strains included in this study. Although many phage and insertion sequence elements were missing from the core component, approximately half the pseudogenes present in S. enterica serovar Typhi were conserved. Furthermore, approximately half the genes conserved in the core set encoded hypothetical proteins. Separation of the core and variant gene sets within S. enterica subspecies I has offered fundamental biological insight into the genetic basis of phenotypic similarity and diversity across S. enterica subspecies I and shown how the core genome of these pathogens differs from the closely related E. coli K-12 laboratory strain.
Resumo:
Observations of the Sun’s corona during the space era have led to a picture of relatively constant, but cyclically varying solar output and structure. Longer-term, more indirect measurements, such as from 10Be, coupled by other albeit less reliable contemporaneous reports, however, suggest periods of significant departure from this standard. The Maunder Minimum was one such epoch where: (1) sunspots effectively disappeared for long intervals during a 70 yr period; (2) eclipse observations suggested the distinct lack of a visible K-corona but possible appearance of the F-corona; (3) reports of aurora were notably reduced; and (4) cosmic ray intensities at Earth were inferred to be substantially higher. Using a global thermodynamic MHD model, we have constructed a range of possible coronal configurations for the Maunder Minimum period and compared their predictions with these limited observational constraints. We conclude that the most likely state of the corona during—at least—the later portion of the Maunder Minimum was not merely that of the 2008/2009 solar minimum, as has been suggested recently, but rather a state devoid of any large-scale structure, driven by a photospheric field composed of only ephemeral regions, and likely substantially reduced in strength. Moreover, we suggest that the Sun evolved from a 2008/2009-like configuration at the start of the Maunder Minimum toward an ephemeral-only configuration by the end of it, supporting a prediction that we may be on the cusp of a new grand solar minimum.
Resumo:
This paper examines the role of the Arctic Ocean Atlantic water (AW) in modifying the Laptev Sea shelf bottom hydrography on the basis of historical records from 1932 to 2008, field observations carried out in April–May 2008, and 2002–2009 cross‐slope measurements. A climatology of bottom hydrography demonstrates warming that extends offshore from the 30–50 m depth contour. Bottom layer temperature‐time series constructed from historical records links the Laptev Sea outer shelf to the AW boundary current transporting warm and saline water from the North Atlantic. The AW warming of the mid‐1990s and the mid‐2000s is consistent with outer shelf bottom temperature variability. For April–May 2008 we observed on‐shelf near‐bottom warm and saline water intrusions up to the 20 m isobath. These intrusions are typically about 0.2°C warmer and 1–1.5 practical salinity units saltier than ambient water. The 2002–2009 cross‐slope observations are suggestive for the continental slope upward heat flux from the AW to the overlying low‐halocline water (LHW). The lateral on‐shelf wind‐driven transport of the LHW then results in the bottom layer thermohaline anomalies recorded over the Laptev Sea shelf. We also found that polynya‐induced vertical mixing may act as a drainage of the bottom layer, permitting a relatively small portion of the AW heat to be directly released to the atmosphere. Finally, we see no significant warming (up until now) over the Laptev Sea shelf deeper than 10–15 m in the historical record. Future climate change, however, may bring more intrusions of Atlantic‐modified waters with potentially warmer temperature onto the shelf, which could have a critical impact on the stability of offshore submarine permafrost.
Resumo:
There are no standardised serving/portion sizes defined for foods consumed in the European Union (EU). Typical serving sizes can deviate significantly from the 100 g/100 ml labelling specification required by the EU legislation. Where the nutritional value of a portion is specified, the portion size is determined by the manufacturers. Our objective was to investigate the potential for standardising portion sizes for specific foods, thereby ensuring complementarity across countries. We compared portion size for 156 food items measured using a food frequency questionnaire across the seven countries participating in the Food4me study. The probability of consuming a food and the frequency of consumption differed across countries for 93% and 58% of the foods, respectively. However, the individual country mean portion size differed from the average across countries in only 16% of comparisons. Thus, although dietary choices vary markedly across countries, there is much less variation in portion sizes. Our results highlight the potential for standardisation of portion sizes on nutrition labels in the EU
Resumo:
Paternity analysis based on eight microsatellite loci was used to investigate pollen and seed dispersal patterns of the dioecious wind- pollinated tree, Araucaria angustifolia. The study sites were a 5.4 ha isolated forest fragment and a small tree group situated 1.7 km away, located in Paran alpha State, Brazil. In the forest fragment, 121 males, 99 females, 66 seedlings and 92 juveniles were mapped and genotyped, together with 210 seeds. In the tree group, nine male and two female adults were mapped and genotyped, together with 20 seeds. Paternity analysis within the forest fragment indicated that at least 4% of the seeds, 3% of the seedlings and 7% of the juveniles were fertilized by pollen from trees in the adjacent group, and 6% of the seeds were fertilized by pollen from trees outside these stands. The average pollination distance within the forest fragment was 83 m; when the tree group was included the pollination distance was 2006m. The average number of effective pollen donors was estimated as 12.6. Mother- trees within the fragment could be assigned to all seedlings and juveniles, suggesting an absence of seed immigration. The distance of seedlings and juveniles from their assigned mother- trees ranged from 0.35 to 291m ( with an average of 83m). Significant spatial genetic structure among adult trees, seedlings, and juveniles was detected up to 50m, indicating seed dispersal over a short distance. The effective pollination neighborhood ranged from 0.4 to 3.3 ha. The results suggest that seed dispersal is restricted but that there is longdistance pollen dispersal between the forest fragment and the tree group; thus, the two stands of trees are not isolated.
Resumo:
Tomato plants (Lycopersicon esculentum Mill. 'DRK') were grown hydroponically in two experiments to determine the effects of nutrient concentration and distribution in the root zone on yield, quality and blossom end rot (BER). The plants were grown in rockwool with their root systems divided into two portions. Each portion was irrigated with nutrient solutions with either the same or different electrical conductivity (EC) in the range 0 to 6 dS m(-1). In both experiments, fruit yields decreased as EC increased from moderate to high when solutions of equal concentration were applied to both portions of the root system. However, higher yields were obtained when a solution with high EC was applied to one portion of the root system and a solution of low EC to the other portion. For example, the fresh weight of mature fruits in the 6/6 treatment was only 20% that of the 3/3 treatment but the 6/0 treatment had a yield that was 40% higher. The reduction in yield in the high EC treatments was due to an increase in the number of fruits with BER and smaller fruit size. BER increased from 12% to 88% of total fruits as EC increased from 6/0 to 6/6 and fruit length decreased from 67 mm to 52 mm. Fruit quality (expressed as titratable acidity and soluble solids) increased as EC increased. In summary, high yields of high quality tomatoes with minimal incidence of BER were obtained when one portion of the root system was supplied with a solution of high EC and the other portion with a solution of moderate or zero EC.
Resumo:
Tomato plants (Lycopersicon esculentum Mill. var. DRK) were grown with a split root system to determine the effect of an unequal distribution of salinity in the root zone on yield and quality. The roots of the plant were divided into two portions and each portion was irrigated with nutrient solutions differing in EC levels achieved by adding Na or K. The maximum yield was observed in treatments with unequal EC when one portion of the roots received only water and the lowest in the high EC treatments. The reduced yield in the high EC treatment was due to the incidence of blossom-end rot and reduced fruit size. Fruit size in the treatments receiving solutions of unequal EC was up to 12% greater than that in the control. No significant differences were found in soluble solids and acidity between control and all other unequal EC treatments. Ca concentration was significantly higher in the treatments where one portion of the root system received water. It was concluded that high salinity had positive effects on yield and quality provided that one portion of the root system were placed in low EC or only water.
Resumo:
Tomato plants ( Lycopersicon esculentum Mill. var. DRK) were grown hydroponically to determine the effect of an uneven distribution of nutrients in the root zone on blossomend rot (BER) and Ca and K concentrations in the fruits. The plants were grown in rockwool with their root system divided into two portions. Each portion was irrigated with nutrient solutions with either the same or the different electrical conductivity (EC) in the range 0 to 6 dS m(-1). Solutions with high EC supplied to both sides of the root system significantly increased the incidence of BER. However, when only water or a solution of low EC was supplied to one portion, BER was reduced by 80%. Fruit yields were significantly higher ( P < 0.01) for plants that received solutions of the uneven EC treatments (6/0 or 4.5/0 EC treatment). Plants supplied with solutions of uneven EC generally had higher leaf and fruit concentrations of Ca but lower concentrations of K than those supplied with solutions of high EC. There was no difference in Ca concentration at the distal end of young fruits of the uneven EC treatment but it was reduced in the high EC treatments. The concentration of K in the mature fruits of the uneven EC treatments was lower than that of the high EC treatments and higher or similar that of the 3/3 or 2.5/2.5 EC treatments ( controls). A clear relationship was found between the incidence of BER and the exudation rate. High rate of xylem exudation was observed in the uneven EC treatments. Reduction of BER in the uneven EC treatments is most likely to be the effect of high exudation rate on Ca status in the young fruits. It was concluded that high EC of solution had positive effects on Ca concentration and incidence of BER provided that nutrient solution with low EC or water is supplied to the one portion of the root system.
Resumo:
Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.
Resumo:
Recent studies have identified a distributed network of brain regions thought to support cognitive reappraisal processes underlying emotion regulation in response to affective images, including parieto-temporal regions and lateral/medial regions of prefrontal cortex (PFC). A number of these commonly activated regions are also known to underlie visuospatial attention and oculomotor control, which raises the possibility that people use attentional redeployment rather than, or in addition to, reappraisal as a strategy to regulate emotion. We predicted that a significant portion of the observed variance in brain activation during emotion regulation tasks would be associated with differences in how participants visually scan the images while regulating their emotions. We recorded brain activation using fMRI and quantified patterns of gaze fixation while participants increased or decreased their affective response to a set of affective images. fMRI results replicated previous findings on emotion regulation with regulation differences reflected in regions of PFC and the amygdala. In addition, our gaze fixation data revealed that when regulating, individuals changed their gaze patterns relative to a control condition. Furthermore, this variation in gaze fixation accounted for substantial amounts of variance in brain activation. These data point to the importance of controlling for gaze fixation in studies of emotion regulation that use visual stimuli.
Resumo:
[ 1] The local heat content and formation rate of the cold intermediate layer (CIL) in the Gulf of Saint Lawrence are examined using a combination of new in situ wintertime observations and a three-dimensional numerical model. The field observations consist of five moorings located throughout the gulf over the period of November 2002 to June 2003. The observations demonstrate a substantially deeper surface mixed layer in the central and northeast gulf than in regions downstream of the buoyant surface outflow from the Saint Lawrence Estuary. The mixed-layer depth in the estuary remains shallow (< 60 m) throughout winter, with the arrival of a layer of near-freezing waters between 40 and 100 m depth in April. An eddy-permitting ice-ocean model with realistic forcing is used to hindcast the period of observation. The model simulates well the seasonal evolution of mixed-layer depth and CIL heat content. Although the greatest heat losses occur in the northeast, the most significant change in CIL heat content over winter occurs in the Anticosti Trough. The observed renewal of CIL in the estuary in spring is captured by the model. The simulation highlights the role of the northwest gulf, and in particular, the separation of the Gaspe Current, in controlling the exchange of CIL between the estuary and the gulf. In order to isolate the effects of inflow through the Strait of Belle Isle on the CIL heat content, we examine a sensitivity experiment in which the strait is closed. This simulation shows that the inflow has a less important effect on the CIL than was suggested by previous studies.
Resumo:
Tomato plants (Lycopersicon esculentum Mill. 'DRK') were grown hydroponically in two experiments to determine the effects of nutrient concentration and distribution in the root zone on yield, quality and blossom end rot (BER). The plants were grown in rockwool with their root systems divided into two portions. Each portion was irrigated with nutrient solutions with either the same or different electrical conductivity (EC) in the range 0 to 6 dS m(-1). In both experiments, fruit yields decreased as EC increased from moderate to high when solutions of equal concentration were applied to both portions of the root system. However, higher yields were obtained when a solution with high EC was applied to one portion of the root system and a solution of low EC to the other portion. For example, the fresh weight of mature fruits in the 6/6 treatment was only 20% that of the 3/3 treatment but the 6/0 treatment had a yield that was 40% higher. The reduction in yield in the high EC treatments was due to an increase in the number of fruits with BER and smaller fruit size. BER increased from 12% to 88% of total fruits as EC increased from 6/0 to 6/6 and fruit length decreased from 67 mm to 52 mm. Fruit quality (expressed as titratable acidity and soluble solids) increased as EC increased. In summary, high yields of high quality tomatoes with minimal incidence of BER were obtained when one portion of the root system was supplied with a solution of high EC and the other portion with a solution of moderate or zero EC.
Resumo:
Tomato plants ( Lycopersicon esculentum Mill. var. DRK) were grown hydroponically to determine the effect of an uneven distribution of nutrients in the root zone on blossomend rot (BER) and Ca and K concentrations in the fruits. The plants were grown in rockwool with their root system divided into two portions. Each portion was irrigated with nutrient solutions with either the same or the different electrical conductivity (EC) in the range 0 to 6 dS m(-1). Solutions with high EC supplied to both sides of the root system significantly increased the incidence of BER. However, when only water or a solution of low EC was supplied to one portion, BER was reduced by 80%. Fruit yields were significantly higher ( P < 0.01) for plants that received solutions of the uneven EC treatments (6/0 or 4.5/0 EC treatment). Plants supplied with solutions of uneven EC generally had higher leaf and fruit concentrations of Ca but lower concentrations of K than those supplied with solutions of high EC. There was no difference in Ca concentration at the distal end of young fruits of the uneven EC treatment but it was reduced in the high EC treatments. The concentration of K in the mature fruits of the uneven EC treatments was lower than that of the high EC treatments and higher or similar that of the 3/3 or 2.5/2.5 EC treatments ( controls). A clear relationship was found between the incidence of BER and the exudation rate. High rate of xylem exudation was observed in the uneven EC treatments. Reduction of BER in the uneven EC treatments is most likely to be the effect of high exudation rate on Ca status in the young fruits. It was concluded that high EC of solution had positive effects on Ca concentration and incidence of BER provided that nutrient solution with low EC or water is supplied to the one portion of the root system.
Resumo:
Seasonal sea-surface temperaturevariability for the Neoglacial (3300–2500 BP) and Roman WarmPeriod (RWP; 2500–1600 BP), which correspond to the Bronze and Iron Ages, respectively, was estimated using oxygen isotope ratios obtained from high-resolution samples micromilled from radiocarbon-dated, archaeological limpet (Patella vulgata) shells. The coldest winter months recorded in Neoglacial shells averaged 6.6 ± 0.3 °C, and the warmest summer months averaged 14.7 ± 0.4 °C. One Neoglacial shell captured a year without a summer, which may have resulted from a dust veil from a volcanic eruption in the Katla volcanic system in Iceland. RWP shells record average winter and summer monthly temperatures of 6.3 ± 0.1 °C and 13.3 ± 0.3 °C, respectively. These results capture a cooling transition from the Neoglacial to RWP, which is further supported by earlier studies of pine history in Scotland, pollen type analyses in northeast Scotland, and European glacial events. The cooling transition observed at the boundary between the Neoglacial and RWP in our study also agrees with the abrupt climate deterioration at 2800–2700 BP (also referred to as the Subboreal/Subatlantic transition) and therefore may have been driven by decreased solar radiation and weakened North Atlantic Oscillation conditions.
Resumo:
The Moraceae family is one of the most abundant and ecologically important families in Neotropical rainforests and is very well-represented in Amazonian fossil pollen records. However, difficulty in differentiating palynologically between the genera within this family, or between the Moraceae and Urticaceae families, has limited the amount of palaeoecological information that can be extracted from these records. The aim of this paper is to analyse the morphological properties of pollen from Amazonian species of Moraceae in order to determine whether the pollen taxonomy of this family can be improved. Descriptive and morphometric methods are used to identify and differentiate key pollen types of the Moraceae (mulberry) and Urticaceae (nettle) families which are represented in Amazonian rainforest communities of Noel Kempff Mercado National Park (NKMNP), Northeast Bolivia. We demonstrate that Helicostylis, Brosimum, Pseudolmedia, Sorocea and Pourouma pollen can be identified in tropical pollen assemblages and present digital images of, and a taxonomic key to, the Moraceae pollen types of NKMNP. Indicator species, Maquira coriacea (riparian evergreen forest) and Brosimum gaudichaudii (open woodland and upland savanna communities), also exhibit unique pollen morphologies. The ability to recognise these ecologically important taxa in pollen records provides the potential for much more detailed and reliable Neotropical palaeovegetation reconstructions than have hitherto been possible. In particular, this improved taxonomic resolution holds promise for resolving long-standing controversies over the interpretation of key Amazonian Quaternary pollen records.