43 resultados para Nonlinear Control
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.
Resumo:
This paper illustrates how internal model control of nonlinear processes can be achieved by recurrent neural networks, e.g. fully connected Hopfield networks. It is shown that using results developed by Kambhampati et al. (1995), that once a recurrent network model of a nonlinear system has been produced, a controller can be produced which consists of the network comprising the inverse of the model and a filter. Thus, the network providing control for the nonlinear system does not require any training after it has been trained to model the nonlinear system. Stability and other issues of importance for nonlinear control systems are also discussed.
Resumo:
This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.
Resumo:
This paper brings together two areas of research that have received considerable attention during the last years, namely feedback linearization and neural networks. A proposition that guarantees the Input/Output (I/O) linearization of nonlinear control affine systems with Dynamic Recurrent Neural Networks (DRNNs) is formulated and proved. The proposition and the linearization procedure are illustrated with the simulation of a single link manipulator.
Resumo:
The main limitation of linearization theory that prevents its application in practical problems is the need for an exact knowledge of the plant. This requirement is eliminated and it is shown that a multilayer network can synthesise the state feedback coefficients that linearize a nonlinear control affine plant. The stability of the linearizing closed loop can be guaranteed if the autonomous plant is asymptotically stable and the state feedback is bounded.
Resumo:
Variational data assimilation in continuous time is revisited. The central techniques applied in this paper are in part adopted from the theory of optimal nonlinear control. Alternatively, the investigated approach can be considered as a continuous time generalization of what is known as weakly constrained four-dimensional variational assimilation (4D-Var) in the geosciences. The technique allows to assimilate trajectories in the case of partial observations and in the presence of model error. Several mathematical aspects of the approach are studied. Computationally, it amounts to solving a two-point boundary value problem. For imperfect models, the trade-off between small dynamical error (i.e. the trajectory obeys the model dynamics) and small observational error (i.e. the trajectory closely follows the observations) is investigated. This trade-off turns out to be trivial if the model is perfect. However, even in this situation, allowing for minute deviations from the perfect model is shown to have positive effects, namely to regularize the problem. The presented formalism is dynamical in character. No statistical assumptions on dynamical or observational noise are imposed.
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other uncertainties of the system are identified on-line by a neural network. The identified results are taken as compensation signals such that the robust adaptive control of nonlinear systems is realised. Simulation results are given.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.
Resumo:
An iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified simplified model based problem with parameter updating in such a manner that the correct solution of the original nonlinear problem is achieved.
Resumo:
A novel iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified linear quadratic model based problem with parameter updating in such a manner that the correct solution of the original non-linear problem is achieved. The resulting algorithm has a particular advantage in that the solution is achieved without the need to solve the differential algebraic equations . Convergence aspects are discussed and a simulation example is described which illustrates the performance of the technique. 1. Introduction When modelling industrial processes often the resulting equations consist of coupled differential and algebraic equations (DAEs). In many situations these equations are nonlinear and cannot readily be directly reduced to ordinary differential equations.
Resumo:
In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.
Resumo:
Recurrent neural networks can be used for both the identification and control of nonlinear systems. This paper takes a previously derived set of theoretical results about recurrent neural networks and applies them to the task of providing internal model control for a nonlinear plant. Using the theoretical results, we show how an inverse controller can be produced from a neural network model of the plant, without the need to train an additional network to perform the inverse control.
Resumo:
The integral manifold approach captures from a geometric point of view the intrinsic two-time-scale behavior of singularly perturbed systems. An important class of nonlinear singularly perturbed systems considered in this note are fast actuator-type systems. For a class of fast actuator-type systems, which includes many physical systems, an explicit corrected composite control, the sum of a slow control and a fast control, is derived. This corrected control will steer the system exactly to a required design manifold.