6 resultados para Non-monotonic logic

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given the non-monotonic form of the radiocarbon calibration curve, the precision of single C-14 dates on the calendar timescale will always be limited. One way around this limitation is through comparison of time-series, which should exhibit the same irregular patterning as the calibration curve. This approach can be employed most directly in the case of wood samples with many years growth present (but not able to be dated by dendrochronology), where the tree-ring series of unknown date can be compared against the similarly constructed C-14 calibration curve built from known-age wood. This process of curve-fitting has come to be called "wiggle-matching." In this paper, we look at the requirements for getting good precision by this method: sequence length, sampling frequency, and measurement precision. We also look at 3 case studies: one a piece of wood which has been independently dendrochronologically dated, and two others of unknown age relating to archaeological activity at Silchester, UK (Roman) and Miletos, Anatolia (relating to the volcanic eruption at Thera).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Commonly used repair rate models for repairable systems in the reliability literature are renewal processes, generalised renewal processes or non-homogeneous Poisson processes. In addition to these models, geometric processes (GP) are studied occasionally. The GP, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensities. This paper deals with the reliability modelling of failure processes for repairable systems where the failure intensity shows a bathtub-type non-monotonic behaviour. A new stochastic process, i.e. an extended Poisson process, is introduced in this paper. Reliability indices are presented, and the parameters of the new process are estimated. Experimental results on a data set demonstrate the validity of the new process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basic repair rate models for repairable systems may be homogeneous Poisson processes, renewal processes or nonhomogeneous Poisson processes. In addition to these models, geometric processes are studied occasionally. Geometric processes, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensity. This paper deals with the reliability modelling of the failure process of repairable systems when the failure intensity shows a bathtub type non-monotonic behaviour. A new stochastic process, an extended Poisson process, is introduced. Reliability indices and parameter estimation are presented. A comparison of this model with other repair models based on a dataset is made.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest since four decades. A satisfactory understanding of the microscopic origin of anisotropy of magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of magnetoviscous effect and the underlying change in micro-structures of ferrofluids. Our results indicate that field-induced chain-like structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A non-monotonic behaviour in the anisotropy of magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of micro-structure formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison of the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. These large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.