12 resultados para Non-i.i.d. Model

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models of the dynamics of nitrogen in soil (soil-N) can be used to aid the fertilizer management of a crop. The predictions of soil-N models can be validated by comparison with observed data. Validation generally involves calculating non-spatial statistics of the observations and predictions, such as their means, their mean squared-difference, and their correlation. However, when the model predictions are spatially distributed across a landscape the model requires validation with spatial statistics. There are three reasons for this: (i) the model may be more or less successful at reproducing the variance of the observations at different spatial scales; (ii) the correlation of the predictions with the observations may be different at different spatial scales; (iii) the spatial pattern of model error may be informative. In this study we used a model, parameterized with spatially variable input information about the soil, to predict the mineral-N content of soil in an arable field, and compared the results with observed data. We validated the performance of the N model spatially with a linear mixed model of the observations and model predictions, estimated by residual maximum likelihood. This novel approach allowed us to describe the joint variation of the observations and predictions as: (i) independent random variation that occurred at a fine spatial scale; (ii) correlated random variation that occurred at a coarse spatial scale; (iii) systematic variation associated with a spatial trend. The linear mixed model revealed that, in general, the performance of the N model changed depending on the spatial scale of interest. At the scales associated with random variation, the N model underestimated the variance of the observations, and the predictions were correlated poorly with the observations. At the scale of the trend, the predictions and observations shared a common surface. The spatial pattern of the error of the N model suggested that the observations were affected by the local soil condition, but this was not accounted for by the N model. In summary, the N model would be well-suited to field-scale management of soil nitrogen, but suited poorly to management at finer spatial scales. This information was not apparent with a non-spatial validation. (c),2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the HadGEM2 family of climate configurations of the Met Office Unified Model, MetUM. The concept of a model "family" comprises a range of specific model configurations incorporating different levels of complexity but with a common physical framework. The HadGEM2 family of configurations includes atmosphere and ocean components, with and without a vertical extension to include a well-resolved stratosphere, and an Earth-System (ES) component which includes dynamic vegetation, ocean biology and atmospheric chemistry. The HadGEM2 physical model includes improvements designed to address specific systematic errors encountered in the previous climate configuration, HadGEM1, namely Northern Hemisphere continental temperature biases and tropical sea surface temperature biases and poor variability. Targeting these biases was crucial in order that the ES configuration could represent important biogeochemical climate feedbacks. Detailed descriptions and evaluations of particular HadGEM2 family members are included in a number of other publications, and the discussion here is limited to a summary of the overall performance using a set of model metrics which compare the way in which the various configurations simulate present-day climate and its variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional scaling, principal component analysis) showed that age was the most significant source of variation in the composition of the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal microbiota, with samples from animals from within the same cage showing high community structure concordance, but large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have major implications for understanding the significance of functional metagenomic data in experimental studies and beg the question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote sensing can potentially provide information useful in improving pollution transport modelling in agricultural catchments. Realisation of this potential will depend on the availability of the raw data, development of information extraction techniques, and the impact of the assimilation of the derived information into models. High spatial resolution hyperspectral imagery of a farm near Hereford, UK is analysed. A technique is described to automatically identify the soil and vegetation endmembers within a field, enabling vegetation fractional cover estimation. The aerially-acquired laser altimetry is used to produce digital elevation models of the site. At the subfield scale the hypothesis that higher resolution topography will make a substantial difference to contaminant transport is tested using the AGricultural Non-Point Source (AGNPS) model. Slope aspect and direction information are extracted from the topography at different resolutions to study the effects on soil erosion, deposition, runoff and nutrient losses. Field-scale models are often used to model drainage water, nitrate and runoff/sediment loss, but the demanding input data requirements make scaling up to catchment level difficult. By determining the input range of spatial variables gathered from EO data, and comparing the response of models to the range of variation measured, the critical model inputs can be identified. Response surfaces to variation in these inputs constrain uncertainty in model predictions and are presented. Although optical earth observation analysis can provide fractional vegetation cover, cloud cover and semi-random weather patterns can hinder data acquisition in Northern Europe. A Spring and Autumn cloud cover analysis is carried out over seven UK sites close to agricultural districts, using historic satellite image metadata, climate modelling and historic ground weather observations. Results are assessed in terms of probability of acquisition probability and implications for future earth observation missions. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Covariation in the structural composition of the gut microbiome and the spectroscopically derived metabolic phenotype (metabotype) of a rodent model for obesity were investigated using a range of multivariate statistical tools. Urine and plasma samples from three strains of 10-week-old male Zucker rats (obese (fa/fa, n = 8), lean (fal-, n = 8) and lean (-/-, n = 8)) were characterized via high-resolution H-1 NMR spectroscopy, and in parallel, the fecal microbial composition was investigated using fluorescence in situ hydridization (FISH) and denaturing gradient gel electrophoresis (DGGE) methods. All three Zucker strains had different relative abundances of the dominant members of their intestinal microbiota (FISH), with the novel observation of a Halomonas and a Sphingomonas species being present in the (fa/fa) obese strain on the basis of DGGE data. The two functionally and phenotypically normal Zucker strains (fal- and -/-) were readily distinguished from the (fa/fa) obese rats on the basis of their metabotypes with relatively lower urinary hippurate and creatinine, relatively higher levels of urinary isoleucine, leucine and acetate and higher plasma LDL and VLDL levels typifying the (fa/fa) obese strain. Collectively, these data suggest a conditional host genetic involvement in selection of the microbial species in each host strain, and that both lean and obese animals could have specific metabolic phenotypes that are linked to their individual microbiomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models of perceptual decision making often assume that sensory evidence is accumulated over time in favor of the various possible decisions, until the evidence in favor of one of them outweighs the evidence for the others. Saccadic eye movements are among the most frequent perceptual decisions that the human brain performs. We used stochastic visual stimuli to identify the temporal impulse response underlying saccadic eye movement decisions. Observers performed a contrast search task, with temporal variability in the visual signals. In experiment 1, we derived the temporal filter observers used to integrate the visual information. The integration window was restricted to the first similar to 100 ms after display onset. In experiment 2, we showed that observers cannot perform the task if there is no useful information to distinguish the target from the distractor within this time epoch. We conclude that (1) observers did not integrate sensory evidence up to a criterion level, (2) observers did not integrate visual information up to the start of the saccadic dead time, and (3) variability in saccade latency does not correspond to variability in the visual integration period. Instead, our results support a temporal filter model of saccadic decision making. The temporal impulse response identified by our methods corresponds well with estimates of integration times of V1 output neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explored the dependency of the saccadic remote distractor effect (RDE) on the spatial frequency content of target and distractor Gabor patches. A robust RDE was obtained with low-medium spatial frequency distractors, regardless of the spatial frequency of the tat-get. High spatial frequency distractors interfered to a similar extent when the target was of the same spatial frequency. We developed a quantitative model based on lateral inhibition within an oculomotor decision unit. This lateral inhibition mechanism cannot account for the interaction observed between target and distractor spatial frequency, pointing to the existence of channel interactions at an earlier level. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that terraces at the air-polymer interface of lamella forming diblock copolymers do not make discontinuous jumps in height. Despite the underlying discretized structure, the height profiles are smoothly varying. The width of a transition region of a terrace edge in isolation is typically several hundreds of nanometres, resulting from a balance between surface tension, chain stretching penalties, and the enthalpy of mixing. What is less well known in these systems is what happens when two transition regions interact with one another. In this study, we investigate the dynamics of the interactions between copolymer lamellar edges. We find that the data can be well described by a model that assumes a repulsion between adjacent edges. While the model is simplistic, and does not include molecular level details, its agreement with the data suggest that some of the the underlying assumptions provide insight into the complex interplay between defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis method for diffusion tensor (DT) magnetic resonance imaging data is described, which, contrary to the standard method (multivariate fitting), does not require a specific functional model for diffusion-weighted (DW) signals. The method uses principal component analysis (PCA) under the assumption of a single fibre per pixel. PCA and the standard method were compared using simulations and human brain data. The two methods were equivalent in determining fibre orientation. PCA-derived fractional anisotropy and DT relative anisotropy had similar signal-to-noise ratio (SNR) and dependence on fibre shape. PCA-derived mean diffusivity had similar SNR to the respective DT scalar, and it depended on fibre anisotropy. Appropriate scaling of the PCA measures resulted in very good agreement between PCA and DT maps. In conclusion, the assumption of a specific functional model for DW signals is not necessary for characterization of anisotropic diffusion in a single fibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transfer of Cd and Zn from soils amended with sewage sludge was followed through a food chain consisting of wheat, aphids and the predator Coccinella septempunctata. Multiple regression models were generated to predict the concentrations of Cd and Zn in C. septempunctata. No significant model could be generated for Cd, indicting that the concentration of this metal was maintained within relatively narrow limits. A model predicting 64% of the variability in the Zn concentration of C. septempunctata was generated from of the concentration of Zn in the diet, time and rate of Zn consumption. The results suggest that decreasing the rate of food consumption is an effective mechanism to prevent the accumulation of Zn and that the availability of Zn in the aphid prey increased with the concentration in the aphids. The results emphasise the importance of using ecologically relevant food chains and exposure pathways during ecotoxicological studies.