92 resultados para Non-Wear Time
em CentAUR: Central Archive University of Reading - UK
Resumo:
Objective To assess the impact of a closed-loop electronic prescribing and automated dispensing system on the time spent providing a ward pharmacy service and the activities carried out. Setting Surgical ward, London teaching hospital. Method All data were collected two months pre- and one year post-intervention. First, the ward pharmacist recorded the time taken each day for four weeks. Second, an observational study was conducted over 10 weekdays, using two-dimensional work sampling, to identify the ward pharmacist's activities. Finally, medication orders were examined to identify pharmacists' endorsements that should have been, and were actually, made. Key findings Mean time to provide a weekday ward pharmacy service increased from 1 h 8 min to 1 h 38 min per day (P = 0.001; unpaired t-test). There were significant increases in time spent prescription monitoring, recommending changes in therapy/monitoring, giving advice or information, and non-productive time. There were decreases for supply, looking for charts and checking patients' own drugs. There was an increase in the amount of time spent with medical and pharmacy staff, and with 'self'. Seventy-eight per cent of patients' medication records could be assessed for endorsements pre- and 100% post-intervention. Endorsements were required for 390 (50%) of 787 medication orders pre-intervention and 190 (21%) of 897 afterwards (P < 0.0001; chi-square test). Endorsements were made for 214 (55%) of endorsement opportunities pre-intervention and 57 (30%) afterwards (P < 0.0001; chi-square test). Conclusion The intervention increased the overall time required to provide a ward pharmacy service and changed the types of activity undertaken. Contact time with medical and pharmacy staff increased. There was no significant change in time spent with patients. Fewer pharmacy endorsements were required post-intervention, but a lower percentage were actually made. The findings have important implications for the design, introduction and use of similar systems.
Resumo:
This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.
Resumo:
This paper examines two hydrochemical time-series derived from stream samples taken in the Upper Hafren catchment, Plynlimon, Wales. One time-series comprises data collected at 7-hour intervals over 22 months (Neal et al., submitted, this issue), while the other is based on weekly sampling over 20 years. A subset of determinands: aluminium, calcium, chloride, conductivity, dissolved organic carbon, iron, nitrate, pH, silicon and sulphate are examined within a framework of non-stationary time-series analysis to identify determinand trends, seasonality and short-term dynamics. The results demonstrate that both long-term and high-frequency monitoring provide valuable and unique insights into the hydrochemistry of a catchment. The long-term data allowed analysis of long-termtrends, demonstrating continued increases in DOC concentrations accompanied by declining SO4 concentrations within the stream, and provided new insights into the changing amplitude and phase of the seasonality of the determinands such as DOC and Al. Additionally, these data proved invaluable for placing the short-term variability demonstrated within the high-frequency data within context. The 7-hour data highlighted complex diurnal cycles for NO3, Ca and Fe with cycles displaying changes in phase and amplitude on a seasonal basis. The high-frequency data also demonstrated the need to consider the impact that the time of sample collection can have on the summary statistics of the data and also that sampling during the hours of darkness provides additional hydrochemical information for determinands which exhibit pronounced diurnal variability. Moving forward, this research demonstrates the need for both long-term and high-frequency monitoring to facilitate a full and accurate understanding of catchment hydrochemical dynamics.
Resumo:
Little has so far been reported on the robustness of non-orthogonal space-time block codes (NO-STBCs) over highly correlated channels (HCC). Some of the existing NO-STBCs are indeed weak in robustness against HCC. With a view to overcoming such a limitation, a generalisation of the existing robust NO-STBCs based on a 'matrix Alamouti (MA)' structure is presented.
Resumo:
Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.
Resumo:
The paper deals with an issue in space time block coding (STBC) design. It considers whether, over a time-selective channel, orthogonal STBC (O-STBC) or non-orthogonal STBC (NO-STBC) performs better. It is shown that, under time-selectiveness, once vehicle speed has risen above a certain value, NO-STBC always outperforms O-STBC across the whole SNR range. Also, considering that all existing NO-STBC schemes have been investigated under quasi-static channels only, a new simple receiver is derived for the NO-STBC system under time-selective channels.
Resumo:
This work provides a framework for the approximation of a dynamic system of the form x˙=f(x)+g(x)u by dynamic recurrent neural network. This extends previous work in which approximate realisation of autonomous dynamic systems was proven. Given certain conditions, the first p output neural units of a dynamic n-dimensional neural model approximate at a desired proximity a p-dimensional dynamic system with n>p. The neural architecture studied is then successfully implemented in a nonlinear multivariable system identification case study.
Resumo:
This paper uses the large-scale Cranet data to explore the extent of non-standard working time (NSWT) across Europe and to highlight the contrasts and similarities between two different varieties of capitalism (coordinated market economies and liberal market economies). We explore variations in the extent of different forms of NSWT (overtime, shift working and weekend working) within these two different forms of capitalism, controlling for firm size, sector and the extent of employee voice. Overall, there was no strong link between the variety of capitalism and the use of overtime and weekend working though shift working showed a clear distinction between the two varieties of capitalism. Usage of NSWT in some service sectors was particularly high under both forms of capitalism and service sector activities had a particularly marked influence on the use of overtime in liberal market economies. Surprisingly, strong employee voice was associated with greater use of NSWT.
Resumo:
The use of Bayesian inference in the inference of time-frequency representations has, thus far, been limited to offline analysis of signals, using a smoothing spline based model of the time-frequency plane. In this paper we introduce a new framework that allows the routine use of Bayesian inference for online estimation of the time-varying spectral density of a locally stationary Gaussian process. The core of our approach is the use of a likelihood inspired by a local Whittle approximation. This choice, along with the use of a recursive algorithm for non-parametric estimation of the local spectral density, permits the use of a particle filter for estimating the time-varying spectral density online. We provide demonstrations of the algorithm through tracking chirps and the analysis of musical data.