142 resultados para Nitrogen fixing algae

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The flavonoid class of plant secondary metabolites play a multifunctional role in below-ground plant-microbe interactions with their best known function as signals in the nitrogen fixing legume-rhizobia symbiosis. Flavonoids enter rhizosphere soil as a result of root exudation and senescence but little is known about their subsequent fate or impacts on microbial activity. Therefore, the present study examined the sorptive behaviour, biodegradation and impact on dehydrogenase activity (as determined by iodonitrotetrazolium chloride reduction) of the flavonoids naringenin and formononetin in soil. Organic carbon normalised partition coefficients, log K-oc, of 3.12 (formononetin) and 3.19 (naringenin) were estimated from sorption isotherms and, after comparison with literature log K-oc values for compounds whose soil behaviour is better characterised, the test flavonoids were deemed to be moderately sorbed. Naringenin (spiked at 50 mu g g(-1)) was biodegraded without a detectable lag phase with concentrations reduced to 0.13 +/- 0.01 mu g g(-1) at the end of the 96 h time course. Biodegradation of formononetin proceeded after a lag phase of similar to 24 with concentrations reduced to 4.5 +/- 1% of the sterile control after 72 h. Most probable number (MPN) analysis revealed that prior to the addition of flavonoids, the soil contained 5.4 x 10(6) MPNg(-1) (naringenin) and 7.9 x 10(5) MPNg(-1) (formononetin) catabolic microbes. Formononetin concentration had no significant (p > 0.05) effect on soil dehydrogenase activity, whereas naringenin concentration had an overall but non-systematic impact (p = 0.045). These results are discussed with reference to likely total and bioavailable concentrations of flavonoids experienced by microbes in the rhizosphere. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impacts of divergent arbuscular mycorrhizal (AM) fungi, Glomus intraradices and Gigaspora margarita, on denitrifying and diazotrophic bacterial communities of Plantago lanceolata in nutrient-limited dune soil were assessed. We hypothesized AM species-related modifications that were confirmed in respective bacterial nirK and nifH sequence polymorphism -based community clustering and community variance allocation. The denitrifying community appeared more responsive to AM fungi than the nitrogen-fixing community. Nevertheless, the main explanatory variable, in both cases, was plant age. We conclude that AM fungi can modify N-cycling microbial rhizosphere communities and future work should aim to verify the functional significance and mechanistic basis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Faba bean (Vicia faba L.) is a globally important nitrogen-fixing legume, which is widely grown in a diverse range of environments. In this work, we mine and validate a set of 845 SNPs from the aligned transcriptomes of two contrasting inbred lines. Each V. faba SNP is assigned by BLAST analysis to a single Medicago orthologue. This set of syntenically anchored polymorphisms were then validated as individual KASP assays, classified according to their informativeness and performance on a panel of 37 inbred lines, and the best performing 757 markers used to genotype six mapping populations. The six resulting linkage maps were merged into a single consensus map on which 687 SNPs were placed on six linkage groups, each presumed to correspond to one of the six V. faba chromosomes. This sequence-based consensus map was used to explore synteny with the most closely-related crop species, lentil, and the most closely related fully sequenced genome, Medicago. Large tracts of uninterrupted colinearity were found between faba bean and Medicago, making it relatively straightforward to predict gene content and order in mapped genetic interval. As a demonstration of this, we mapped a flower colour gene to a 2 cM interval of Vf chromosome 2 which was highly collinear with Mt3. The obvious candidate gene from 77 gene models in the collinear Medicago chromosome segment was the previously characterized MtWD40-1 gene (Mt3g092830, Mt3g092840) controlling anthocyanin production in Medicago and re-sequencing of the Vf orthologue showed a putative causative deletion of the entire 5’ end of the gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and aims: To form nitrogen-fixing nodules on pea roots, Rhizobium leguminosarum biovar viciae must be competitive in the rhizosphere. Our aim was to identify genes important for rhizosphere fitness. Methods: Signature-tagged mutants were screened using microarrays to identify mutants reduced for growth in pea rhizospheres. Candidate mutants were assessed relative to controls for growth in minimal medium, growth in pea rhizospheres and for infection of peas in mixed inoculants. Mutated genes were identified by DNA sequencing and confirmed by transduction. Results: Of 5508 signature-tagged mutants, microarrays implicated 50 as having decreased rhizosphere fitness. Growth tests identified six mutants with rhizosphere-specific phenotypes. The mutation in one of the genes (araE) was in an arabinose catabolism operon and blocked growth on arabinose. The mutation in another gene (pcaM), encoding a predicted solute binding protein for protocatechuate and hydroxybenzoate uptake, decreased growth on protocatechuate. Both mutants were decreased for nodule infection competitiveness with mixed inoculants, but nodulated peas normally when inoculated alone. Other mutants with similar phenotypes had mutations predicted to affect secondary metabolism. Conclusions: Catabolism of arabinose and protocatechuate in the pea rhizosphere is important for competitiveness of R.l. viciae. Other genes predicted to be involved in secondary metabolism are also important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of presubmergence and green manuring on various processes involved in [N-15]-urea transformations were studied in a growth chamber after [N-15]-urea application to floodwater. Presubmergence for 14 days increased urea hydrolysis rates and floodwater pH, resulting in higher NH3 volatilization as compared to without presubmergence. Presubmergence also increased nitrification and subsequent denitrification but lower N assimilation by floodwater algae caused higher gaseous losses. Addition of green manure maintained higher NH4+-N concentration in floodwater mainly because of lower nitrification rates but resulted in highest NH3 volatilization losses. Although green manure did not affect the KCl extractable NH4+-N from applied fertilizer, it maintained higher NH4+-N content due to its decomposition and increased mineralization of organic N. After 32 days about 36.9% (T-1), 23.9% (T-2), and 36.4% (T-3) of the applied urea N was incorporated in the pool of soil organic N in treatments. It was evident that the presubmergence has effected the recovery of applied urea N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution closes this special issue of Hydrology and Earth System Sciences concerning the assessment of nitrogen dynamics in catchments across Europe within a semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA). New developments in the understanding of the factors and processes determining the concentrations and loads of nitrogen are outlined. The ability of the INCA model to simulate the hydrological and nitrogen dynamics of different European ecosystems is assessed and the results of the first scenario analyses investigating the impacts of deposition, climatic and land-use change on the nitrogen dynamics are summarised. Consideration is given as to how well the model has performed as a generic too] for describing the nitrogen dynamics of European ecosystems across Arctic, Maritime. Continental and Mediterranean climates, its role in new research initiatives and future research requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The translocation of C and N in a maize-Striga hermonthica association was investigated at three rates of nitrogen application in a glasshouse experiment. The objectives were to measure the transfer of C and N from maize to S. hermonthica and to determine whether the amount of N in the growing medium affected the proportions of C and N transferred. Young plants of maize were labelled in a (CO2)-C-13 atmosphere and leaf tips were immersed in ((NH4)-N-15)(2)SO4 Solution. The Striga x N interaction was not significant for any of the responses measured. Total dry matter for infected maize was significantly smaller than for uninfected maize from 43 to 99 days after planting, but N application increased total dry matter at all sampling times. Infected maize plants partitioned 39-45 % of their total dry matter to the roots compared with 28-31 % for Uninfected maize. Dry matter of S. hermonthica was not affected by the rate of N applied. S. hermonthica derived 100 % of its carbon from maize before emergence, decreasing to 22-59 % thereafter; the corresponding values for nitrogen were up to 59 % pre-emergence and Lip to 100 % after emergence. The relative proportions of nitrogen depleted from the host (up to 10 %) were greater than those of carbon (maximum 1.2 %) at all times of sampling after emergence of the parasite. The results show that the parasite was more dependent on the host for nitrogen than for carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main inputs, outputs and transfers of potassium (K) in soils and swards under typical south west England conditions were determined during 1999/00 and 2000/01 to establish soil and field gate K budgets under different fertilizer nitrogen (N) (0 and 280 kg ha(-1) yr(-1)) and drainage (undrained and drained) treatments. Plots receiving fertilizer N also received farmyard manure (FYM). Potassium soil budgets ranged, on average for the two years, from -5 (+N, drained) to +9 (no N and undrained) kg K ha(-1) yr(-1) and field gate budgets from +23 (+N, drained) to +89 (+N, undrained). The main inputs and outputs to the soil K budgets were fertilizer application (65%) and plant uptake (93%). Animals had a minor effect on K export but a major impact on K recycling. Nitrogen fertilizer application and drainage increased K uptake by the grass and, with it, the efficiency of K used. It also depleted easily available soil K, which could be associated with smaller K losses by leaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technology for site-specific applications of nitrogen (N) fertilizer has exposed a gap in our knowledge about the spatial variation of soil mineral N, and that which will become available during the growing season within arable fields. Spring mineral N and potentially available N were measured in an arable field together with gravimetric water content, loss on ignition, crop yield, percentages of sand, silt, and clay, and elevation to describe their spatial variation geostatistically. The areas with a larger clay content had larger values of mineral N, potentially available N, loss on ignition and gravimetric water content, and the converse was true for the areas with more sandy soil. The results suggest that the spatial relations between mineral N and loss on ignition, gravimetric water content, soil texture, elevation and crop yield, and between potentially available N and loss on ignition and silt content could be used to indicate their spatial patterns. Variable-rate nitrogen fertilizer application would be feasible in this field because of the spatial structure and the magnitude of variation of mineral N and potentially available N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased atmospheric deposition of inorganic nitrogen (N) may lead to increased leaching of nitrate (NO3-) to surface waters. The mechanisms responsible for, and controls on, this leaching are matters of debate. An experimental N addition has been conducted at Gardsjon, Sweden to determine the magnitude and identify the mechanisms of N leaching from forested catchments within the EU funded project NITREX. The ability of INCA-N, a simple process-based model of catchment N dynamics, to simulate catchment-scale inorganic N dynamics in soil and stream water during the course of the experimental addition is evaluated. Simulations were performed for 1990-2002. Experimental N addition began in 1991. INCA-N was able to successfully reproduce stream and soil water dynamics before and during the experiment. While INCA-N did not correctly simulate the lag between the start of N addition and NO 2 3 breakthrough, the model was able to simulate the state change resulting from increased N deposition. Sensitivity analysis showed that model behaviour was controlled primarily by parameters related to hydrology and vegetation dynamics and secondarily by in-soil processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of two blue-green algae species, Anabaeria flos-aquae and Microcystis aeruginosa, to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was investigated. The experiments examined the formation potential of these disinfection by-products (DBPs) from both algae cells and extracellular organic matter (EOM) during four algal growth phases. Algal cells and EOM of Anabaena and Microcystis exhibited a high potential for DBP formation. Yields of total THMs (TTHM) and total HAAs (THAA) were closely related to the growth phase. Reactivity of EOM from Anabaena was slightly higher than corresponding cells, while the opposite result was found for Microcystis. Specific DBP yields (yield/unit C) of Anabaena were in the range of 2-11 mu mol/mmol C for TTHM and 217 mu mol/mmol C for THAA, while those of Microcystis were slightly higher. With regard to the distributions of individual THM and HAA compounds, differences were observed between the algae species and also between cells and EOM. The presence of bromide shifted the dominant compounds from HAAs to THMs. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative model of wheat root systems is developed that links the size and distribution of the root system to the capture of water and nitrogen (which are assumed to be evenly distributed with depth) during grain filling, and allows estimates of the economic consequences of this capture to be assessed. A particular feature of the model is its use of summarizing concepts, and reliance on only the minimum number of parameters (each with a clear biological meaning). The model is then used to provide an economic sensitivity analysis of possible target characteristics for manipulating root systems. These characteristics were: root distribution with depth, proportional dry matter partitioning to roots, resource capture coefficients, shoot dry weight at anthesis, specific root weight and water use efficiency. From the current estimates of parameters it is concluded that a larger investment by the crop in fine roots at depth in the soil, and less proliferation of roots in surface layers, would improve yields by accessing extra resources. The economic return on investment in roots for water capture was twice that of the same amount invested for nitrogen capture. (C) 2003 Annals of Botany Company.