21 resultados para Nitrobenzene hydrogenation

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric catalysis is of paramount importance in organic synthesis and, in current practice, is achieved by means of homogeneous catalysts. The ability to catalyze such reactions heterogeneously would have a major impact both in the research laboratory and in the production of fine chemicals and pharmaceuticals, yet heterogeneous asymmetric hydrogenation of C═C bonds remains hardly explored. Very recently, we demonstrated how chiral ligands that anchor robustly to the surface of Pd nanoparticles promote asymmetric catalytic hydrogenation: ligand rigidity and stereochemistry emerged as key factors. Here, we address a complementary question: how does the enone reactant adsorb on the metal surface, and what implications does this have for the enantiodifferentiating interaction with the surface-tethered chiral modifiers? A reaction model is proposed, which correctly predicts the identity of the enantiomer experimentally observed in excess.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and hydrogenation of acrolein on the Ag(111) surface has been investigated by high resolution synchrotron XPS, NEXAFS, and temperature programmed reaction. The molecule adsorbs intact at all coverages and its adsorption geometry is critically important in determining chemoselectivity toward the formation of allyl alcohol, the desired but thermodynamically disfavored product. In the absence of hydrogen adatoms (H(a)), acrolein lies almost parallel to the metal surface; high coverages force the C=C bond to tilt markedly, likely rendering it less vulnerable toward reaction with hydrogen adatoms. Reaction with coadsorbed H(a) yields allyl alcohol, propionaldehyde, and propanol, consistent with the behavior of practical dispersed Ag catalysts operated at atmospheric pressure: formation of all three hydrogenation products is surface reaction rate limited. Overall chemoselectivity is strongly influenced by secondary reactions of allyl alcohol. At low H(a) coverages, the C=C bond in the newly formed allyl alcohol molecule is strongly tilted with respect to the surface, rendering it immune to attack by H(a) and leading to desorption of the unsaturated alcohol. In contrast with this, at high H(a) coverages, the C=C bond in allyl alcohol lies almost parallel to the surface, undergoes hydrogenation by H(a), and the saturated alcohol (propanol) desorbs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ synthesis and testing of Ru and Pd nanoparticles as catalysts in the presence of ammonium perfluorohydrocarbo-carboxylate surfactant in supercritical carbon dioxide were carried out in a stainless steel batch reactor at 40 degrees C over a pressure range of 80-150 bar CO2/H-2. Direct Visualization of the formation of a supercritical phase at above 80 bar, followed by the formation of homogeneous microemulsions containing dispersed Ru nanoparticles and Pd nanoparticles in scCO(2) at above 95-100 bar, were conducted through a sapphire window reactor using a W-0 (molar water to surfactant ratio) of 30. The synthesised RU and Pd nanoparticles showed interesting product distributions in the selective hydrogenation of organic molecules, depending critically oil the density and polarity of the fluid (which ill turn depends on the pressure applied). Thus, selective hydrogenation of the citral molecule, which contains three reducible groups (aldehydes and double bonds at the 23 and 6,7 positions), is feasible Lis a chemical probe. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homogeneous dispersion of microemulsion containing palladium nanoparticles in scCO(2) is, for the first time, observed via sapphire window reactor and these particles show an unusual reluctance for double bond hydrogenation of citral aldehyde at hydrophobic end rather than hydrophilic end (high regioselectivity) owing to the unique micelle environment in supercritical carbon dioxide that guide a head-on attack of the molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO(2)) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO(2) is therefore carried out in a stainless steel batch reactor at 40 degreesC and in a 150 bar CO2/H-2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO(2) is observed through a sapphire window reactor at W-0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C-1-Symmetric phosphino/phosphonite ligands are prepared by the reactions of Ph2P(CH2)(2)P(NMe2)(2) with (S)-1,11'-bi-2-naphthol (to give L-A) or (S)-10,10'-bi-9-phenanthrol (to give L-B). Racemic 10,10'-bi-9-phenanthrol is synthesized in three steps from phenanthrene in 44% overall yield. The complexes [PdCl2(L-A,L-B)] (1a,b), [PtCl2(L-A,L-B)] (2a,b), [Rh(cod)(L-A,L-B)]BF4 (3a,b) and [Rh(L-A,L-B)(2)]BF4 (4a,b) are reported and the crystal structure of la has been determined. A P-31 NMR study shows that M, a 1:1 mixture of the monodentates, PMePh2 and methyl monophosphonite L-1a (based on (S)-1,11'-bi-2-naphthol), reacts with 1 equiv of [Rh(cod)(2)]BF4 to give the heteroligand complex [Rh(cod)(PMePh2)(L-1a)]BF4 (5) and homoligand complexes [Rh(cod)(PMePh2)(2)]BF4 (6) and [Rh(cod)(L-1a)(2)]BF4 (7) in the ratio 2:1:1. The same mixture of 5-7 is obtained upon mixing the isolated homoligand complexes 6 and 7 although the equilibrium is only established rapidly in the presence of an excess of PMePh2. The predominant species 5 is a monodentate ligand complex analogue of the chelate 3a. When the mixture of 5-7 is exposed to 5 atm H-2 for 1 h (the conditions used for catalyst preactivation in the asymmetric hydrogenation studies), the products are identified as the solvento species [Rh(PMePh2)(L-1a)(S)(2)]BF4 (5'), [Rh(S)(2)(PMePh2)(2)]BF4 (6') and [Rh(S)(2)(L-1a)(2)]BF4 (7') and are formed in the same 2:1:1 ratio. The reaction of M with 0.5 equiv of [Rh(cod)(2)]BF4 gives exclusively the heteroligand complex cis-[Rh(PMePh2)(2)(L-1a)(2)]BF4 (8), an analogue of 4a. The asymmetric hydrogenation of dehydroamino acid derivatives catalyzed by 3a,b is reported, and the enantioselectivities are compared with those obtained with (a) chelate catalysts derived from analogous diphosphonite ligands L-2a and L-2b, (b) catalysts based on methyl monophosphonites L-1a and L-1b, and (c) catalysts derived from mixture M. For the cinnamate and acrylate substrates studied, the catalysts derived from the phosphino/phosphonite bidentates L-A,L-B generally give superior enantioselectivities to the analogous diphosphonites L-2a and L-2b; these results are rationalized in terms of delta/lambda-chelate conformations and allosteric effects of the substrates. The rate of hydrogenation of acrylate substrate A with heterochelate 3a is significantly faster than with the homochelate analogues [Rh(L-2a)(cod)]BF4 and [Rh(dppe)(cod)]BF4. A synergic effect on the rate is also observed with the monodentate analogues: the rate of hydrogenation with the mixture containing predominantly heteroligand complex 5 is faster than with the monophosphine complex 6 or monophosphonite complex 7. Thus the hydrogenation catalysis carried out with M and [Rh(cod)(2)]BF4 is controlled by the dominant and most efficient heteroligand complex 5. In this study, the heterodiphos chelate 3a is shown to be more efficient and gives the opposite sense of optical induction t the heteromonophos analogue

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric hydrogenation of C=C bonds is of the highest importance in organic synthesis, and such reactions are currently carried out with organometallic homogeneous catalysts. Achieving heterogeneous metal-catalyzed hydrogenation, a highly desirable goal, necessitates forcing the crucial enantiodifferentiating step to take place at the metal surface. By synthesis and application of six chiral sulfide ligands that anchor robustly to Pd nanoparticles and resist displacement, we have for the first time accomplished heterogeneous enantioselective catalytic hydrogenation of isophorone. High resolution XPS data established that ligand adsorption from solution occurred exclusively on the Pd nanoparticles and not on the carbon support. All ligands contained a pyrrolidine nitrogen to enable their interaction with the isophorone substrate while the sulfide functionality provided the required interaction with the Pd surface. Enantioselective turnover numbers of up to similar to 100 product molecules per ligand molecule were found with a very large variation in asymmetric induction between ligands: observed enantiomeric excesses increased with increasing size of the alkyl group in the sulfide. This likely reflects varying degrees of ligand dispersion on the surface: bulky substituent groups hinder close approach of ligand molecules to each other, inhibiting close-packed island formation, favoring dispersion as separate molecules, and leading to effective asymmetric induction. Conversely, small substituents favor island formation leading to very low asymmetric induction. Enantioselective reaction most likely involves initial formation of an enamine or iminium species, confirmed by use of an analogous tertiary amine, which leads to racemic product. Ligand rigidity and resistance to self-assembled monolayer formation are important attributes that should be designed into improved chiral modifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bimetallic Pd-Ru nanoparticles of different elemental ratios are prepared via in situ reduction of their simple salts in reverse micelles in supercritical carbon dioxide (scCO(2)). The optimised Pd:Ru (1: 1) nanoparticle shows the highest activity for hydrogenation of functionalised alkene under mild conditions, which can be easily recycled under the reaction conditions without use of organic solvent. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of small molecules on the Ni{111} and NiO{111} surfaces is investigated under UHV and elevated pressures (~10-1 mbar) of hydrogen and water. The molecules considered are chosen for their relevance to understanding the mechanism of enantioselective hydrogenation on Raney Nickel modified by chiral molecules. Adsorption of water onto, and its subsequent reaction with, oxygen-covered Ni{111} is dependent on the initial atomic oxygen coverage. An OH species (O1s binding energy 531.5eV), oriented perpendicular to the surface, forms at atomic oxygen coverages <0.25ML. The reaction does not consume all the adsorbed oxygen for coverages ≥0.12ML. The p(2×2) atomic oxygen uperstructure is unreactive, while an OH species is formed on the p(√3×√3) superstructure at binding energy 530.9eV. L-alanine is adsorbed on Ni{111} as a model chiral modifier molecule. At low coverages, alanine forms a presumed tridentate alaninate species for coverages ≥0.11ML at 250K. A minority, bidentate zwitterionic species forms at coverages >0.11ML, but was not observed at 300K. Saturation occurs at 0.25ML. At high alanine coverages (≥0.19ML) and H2 pressure (≥1×10-2 mbar), the tridentate L-alaninate converts to bidentate zwitterionic L-alanine at 300K. Thermal evolution of L-alanine on Ni{111} under varying hydrogen pressures is examined. Adsorption of L-alanine onto hydroxylated NiO{111} at 300K in UHV, mimicking a catalyst surface under aqueous conditions, yields the tridentate alaninate which is immune to the effects of elevated hydrogen pressure. Exposing the L-alanine/Ni{111} adsorption system to water (≤10-1 mbar) oxidises the surface and recreates the L-alanine/hydroxylated NiO{111} system. Pyruvic acid on Ni{111} is examined as a model for hydrogenation substrate adsorption. Behaviour is coverage dependent and several conformations are possible at low coverages (≤0.1ML). Annealing at coverages <0.2ML causes a condensation reaction, releasing water onto the surface. High coverages do not condense and a saturation coverage of ~0.35ML is found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continuing importance of blue denim maintains indigo as an important vat dye industrially. In this review, we examine the various methods that have been used in the past and are currently used to reduce and dissolve indigo for dyeing. We discuss recent insights into the bacterial fermentation technology, the advantages and disadvantages of the direct chemical methods that have predominated for the last century and potentially cleaner technologies of catalytic hydrogenation and electrochemistry, which are becoming increasingly important. With considerations of environmental impact high on the dyeing industry's agenda, we also discuss the developments that have led to the production of pre-reduced indigo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The confined crystallization of poly(ethylene oxide) (PEO) in predominantly spherical microdomains formed by several diblock copolymers was studied and compared. Two polybutadiene-b-poly(ethylene oxide) diblock copolymers were prepared by sequential anionic polymerization (with approximately 90 and 80 wt % polybutadiene (PB)). These were compared to equivalent samples after catalytic hydrogenation that produced double crystalline polyethylene-b-poly(ethylene oxide) diblock copolymers. Both systems are segregated into microdomains as indicated by small-angle X-ray scattering (SAXS) experiments performed in the melt and at lower temperatures. However, the PB-b-PEO systems exhibited a higher degree of order in the melt. A predominantly spherical morphology of PEO in a PB or a PE matrix was observed by both SAXS and transmission electron microscopy, although a possibly mixed morphology (spheres and cylinders) was formed when the PEO composition was close to the cylinder-sphere domain transitional composition as indicated by SAXS. Differential scanning calorimetry experiments showed that a fractionated crystallization process for the PEO occurred in all samples, indicating that the PE cannot nucleate PEO in these diblock copolymers. A novel result was the observation of a subsequent fractionated melting that reflected the crystallization process. Sequential isothermal crystallization experiments allowed us to thermally separate at least three different crystallization and melting peaks for the PEO microdomains. The lowest melting point fraction was the most important in terms of quantity and corresponded to the crystallization of isolated PEO spheres (or cylinders) that were either superficially or homogeneously nucleated. This was confirmed by Avrami index values of approximately 1. The isothermal crystallization results indicate that the PE matrix restricts the crystallization of the covalently bonded PEO to a higher degree compared to PB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray crystal structure shows that 3,5-dimethyl-1-(2-nitrophenyl)-1H-pyrazole (DNP) belongs to the rare class of helically twisted synthetic organic molecules. Hydrogenation of DNP gives 2-(3,5-dimethylpyrazole-1-yl)phenylamine (L) which on methylation yields [2-(3,5-dimethylpyrazole-1-yl)phenyl]dimethylamine (L'). Two Pd(II) complexes, PdLCl2 (1) and PdL'Cl-2 (2), are synthesized and characterized by NMR. X-ray crystallography reveals that 1 and 2 are unprecedented square planar complexes which possess well discernible helical twists. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the effects of adding tin and/or titanium dopant to sodium aluminium hydride for both dehydrogenation and re-hydrogenation reactions during their reversible storage of molecular hydrogen. Temperature programmed decomposition (TPD) measurements show that the dehydrogenation kinetics of NaAlH4 are significantly enhanced upon doping the material with 2 mol% of tributyltin hydride, Sn(Bu)(3)H but the tin catalyst dopant is shown to be inferior than titanium. On the other hand, in this preliminary work, a significant synergetic catalytic effect is clearly revealed in material co-doped with both titanium and tin catalysts which shows the highest reversible rates of dehydrogenation and re-hydrogenation (after their hydrogen depletion). The re-hydrogenation rates of depleted Sn/Ti/NaAlH4 evaluated at both 9.5 and 140 bars hydrogen are also found to be favourable compared to the Ti/NaAlH4, which clearly suggest the importance of the catalyst choice. Basing on these results some mechanistic insights for the catalytic reversible dehydrogenation and re-hydrogenation processes of Sn/Ti/NaAlH4 are therefore made. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[GRAPHICS] The synthesis of unsaturated beta-linked C-disaccharides by the Lewis acid-mediated reaction of 3-O-acetylated glycals with monosaccharide-derived alkenes is described. Deprotection and selective hydrogenation of an exocyclic carbon-carbon double, in the presence of an endocyclic double bond, for representative targets is also illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of well-defined nanoparticles has been intensively pursued not only for their fundamental scientific interest, but also for many technological applications. One important development of the nanomaterial is in the area of chemical catalysis. We have now developed a new aqueous-based method for the synthesis of silica encapsulated noble metal nanoparticles in controlled dimensions. Thus, colloid stable silica encapsulated similar to 5 nm platinum nanoparticle is synthesized by a multi-step method. The thickness of the silica coating could be controlled using a different amount of silica precursor. These particles supported on a high surface area alumina are also demonstrated to display a superior hydrogenation activity and stability against metal sintering after thermal activation.