23 resultados para Niemcewicz, Julian Ursyn, 1758-1841.

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A life cycle of the Madden–Julian oscillation (MJO) was constructed, based on 21 years of outgoing long-wave radiation data. Regression maps of NCEP–NCAR reanalysis data for the northern winter show statistically significant upper-tropospheric equatorial wave patterns linked to the tropical convection anomalies, and extratropical wave patterns over the North Pacific, North America, the Atlantic, the Southern Ocean and South America. To assess the cause of the circulation anomalies, a global primitive-equation model was initialized with the observed three-dimensional (3D) winter climatological mean flow and forced with a time-dependent heat source derived from the observed MJO anomalies. A model MJO cycle was constructed from the global response to the heating, and both the tropical and extratropical circulation anomalies generally matched the observations well. The equatorial wave patterns are established in a few days, while it takes approximately two weeks for the extratropical patterns to appear. The model response is robust and insensitive to realistic changes in damping and basic state. The model tropical anomalies are consistent with a forced equatorial Rossby–Kelvin wave response to the tropical MJO heating, although it is shifted westward by approximately 20° longitude relative to observations. This may be due to a lack of damping processes (cumulus friction) in the regions of convective heating. Once this shift is accounted for, the extratropical response is consistent with theories of Rossby wave forcing and dispersion on the climatological flow, and the pattern correlation between the observed and modelled extratropical flow is up to 0.85. The observed tropical and extratropical wave patterns account for a significant fraction of the intraseasonal circulation variance, and this reproducibility as a response to tropical MJO convection has implications for global medium-range weather prediction. Copyright © 2004 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies using the Hadley Centre coupled model (HadCM3) have shown that the islands of the Maritime Continent act as an unrealistic block to the eastward propagation of the Madden-Julian Oscillation (MJO). This blocking effect is investigated using a simplified, aqua-planet version of this GCM, with various idealized configurations of the Maritime Continent islands placed on the equator, and an MJO-like convective signal forced by a propagating sea-surface temperature anomaly dipole. Results suggest that it is the orography of the islands, rather than the presence of the islands themselves, which results in the blocking of the MJO. Although the peak elevation of the orography in the GCM is very much lower than in reality, it appears to act as effective block to the eastward propagation of the low-level Kelvin wave signal which accompanies the MJO. In particular, the representation of Sumatra in the GCM, as a north-south oriented ridge straddling the equator, seems to be particularly effective at blocking the Kelvin wave signal, which in a full GCM would result in the weakening or complete extinction of the MJO signal to the east of the Maritime Continent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2002 India experienced a severe drought, one among the five worst droughts since records began in 1871, notable for its countrywide influence. The drought was primarily due to an unprecedented break in the monsoon during July, which persisted for almost the whole month and affected most of the sub-continent. The failure of the monsoon in 2002 was not predicted and India was not prepared for the devastating impacts on, for example, agriculture. This paper documents the evolution of the 2002 Indian summer monsoon and considers the possible factors that contributed to the drought and the failure of the forecasts. The development of the 2002/2003 El Nino and the unusually high levels of Madden-Julian Oscillation (MJO) activity during the monsoon season are identified as the central players. The 2002/2003 El Nino was characterised by very high sea-surface temperatures (SSTs) in the central Pacific that developed rapidly during the monsoon season. It is suggested that the unusual character of the developing El Nino was associated with the MJO and was a consequence of the eastward extension of the West Pacific Warm Pool, brought about primarily by a series of westerly wind events (WWEs) as part of the eastward movement of the active phase of the MJO. During the boreal summer, the MJO is usually characterised by northward movement, but in 2002 the northward component of the MJO was weak and the MJO was dominated by a strong eastward component, probably driven by the abnormally high SSTs in the central Pacific. It is suggested that a positive feedback existed between the developing El Nino and the eastward component of the MJO, which weakened the active phases of the monsoon. In particular, the unprecedented monsoon break in July could be associated with the juxtaposition of strong MJO activity with a developing El Nino, both of which interfered constructively with each other to produce major perturbations to the distribution of tropical heating. Subsequently, the main impact of the developing El Nino was a modulation of the Walker circulation that led to the overall suppression of the Indian monsoon during thess latter part of the season. It is argued that the unique combination of a rapidly developing El Nino and strong MJO activity, which was timed within the seasonal cycle to have maximum impact on the Indian summer monsoon, meant that prediction of the prolonged break in July and the seasonally deficient rainfall was a challenge for both the empirical and dynamical forecasting systems. Copyright (C) 2006 Royal Meteorological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of convective processes in moistening the atmosphere during suppressed periods of the suppressed phase of a Madden-Julian oscillation is investigated in cloud-resolving model (CRM) simulations, and the impact of moistening on the subsequent evolution of convection is assessed as part of a Global Energy and Water Cycle Experiment Cloud System Study (GCSS) intercomparison project. The ability of single-column model (SCM) versions of a number of state-of-the-art climate and numerical weather prediction models to capture these convective processes is also evaluated. During the suppressed periods, the CRMs are found to simulate a maximum moistening around 3 km, which is associated with a predominance of shallow convection. All SCMs produce adequate amounts of shallow convection during the suppressed periods, comparable to that seen in CRMs, but the relatively drier SCMs have higher precipitation rates than the relatively wetter SCMs and CRMs. The relatively drier SCMs dry, rather than moisten, the lower troposphere below the melting level. During the transition periods, convective processes act to moisten the atmosphere above the level at which mean advection changes from moistening to drying, despite an overall drying effect for the column. The SCMs capture some essence of this moistening at upper levels. A gradual transition from shallow to deep convection is simulated by the CRMs and the wetter SCMs during the transition periods, but the onset of deep convection is delayed in the drier SCMs. This results in lower precipitation rates for these SCMs during the active periods, although much better agreement exists between the models at this time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A subtropical Rossby-wave propagation mechanism is proposed to account for the poleward and eastward progression of intraseasonal convective anomalies along the South Pacific convergence zone (SPCZ) that is observed in a significant proportion of Madden–Julian oscillations (MJOs). Large-scale convection, associated with an MJO, is assumed to be already established over the Indonesian region. The latent heating associated with this convection forces an equatorial Rossby-wave response with an upper-tropospheric anticyclone centred over, or slightly to the west of, the convection. Large potential-vorticity (PV) gradients, associated with the subtropical jet and the tropopause, lie just poleward of the anticyclone, and large magnitude PV air is advected equatorwards on the eastern side of the anticyclone. This ‘high’ PV air, or upper-tropospheric trough, is far enough off the equator that it has associated strong horizontal temperature gradients, and it induces deep ascent on its eastern side, at a latitude of about 15–30°. If this deep ascent is over a region susceptible to deep convection, such as the SPCZ, then convection may be forced or triggered. Hence convection develops along the SPCZ as a forced response to convection over Indonesia. The response mechanism is essentially one of subtropical Rossby-wave propagation. This hypothesis is based on a case study of a particularly strong MJO in early 1988, and is tested by idealized modelling studies. The mechanism may also be relevant to the existence of the mean SPCZ, as a forced response to mean Indonesian convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In its default configuration, the Hadley Centre climate model (GA2.0) simulates roughly one-half the observed level of Madden–Julian oscillation activity, with MJO events often lasting fewer than seven days. We use initialised, climate-resolution hindcasts to examine the sensitivity of the GA2.0 MJO to a range of changes in sub-grid parameterisations and model configurations. All 22 changes are tested for two cases during the Years of Tropical Convection. Improved skill comes only from (a) disabling vertical momentum transport by convection and (b) increasing mixing entrainment and detrainment for deep and mid-level convection. These changes are subsequently tested in a further 14 hindcast cases; only (b) consistently improves MJO skill, from 12 to 22 days. In a 20-year integration, (b) produces near-observed levels of MJO activity, but propagation through the Maritime Continent remains weak. With default settings, GA2.0 produces precipitation too readily, even in anomalously dry columns. Implementing (b) decreases the efficiency of convection, permitting instability to build during the suppressed MJO phase and producing a more favourable environment for the active phase. The distribution of daily rain rates is more consistent with satellite data; default entrainment produces 6–12 mm/day too frequently. These results are consistent with recent studies showing that greater sensitivity of convection to moisture improves the representation of the MJO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convectively active part of the Madden-Julian Oscillation (MJO) propagates eastward through the warm pool, from the Indian Ocean through the Maritime Continent (the Indonesian archipelago) to the western Pacific. The Maritime Continent's complex topography means the exact nature of the MJO propagation through this region is unclear. Model simulations of the MJO are often poor over the region, leading to local errors in latent heat release and global errors in medium-range weather prediction and climate simulation. Using 14 northern winters of TRMM satellite data it is shown that, where the mean diurnal cycle of precipitation is strong, 80% of the MJO precipitation signal in the Maritime Continent is accounted for by changes in the amplitude of the diurnal cycle. Additionally, the relationship between outgoing long-wave radiation (OLR) and precipitation is weakened here, such that OLR is no longer a reliable proxy for precipitation. The canonical view of the MJO as the smooth eastward propagation of a large-scale precipitation envelope also breaks down over the islands of the Maritime Continent. Instead, a vanguard of precipitation (anomalies of 2.5 mm day^-1 over 10^6 km^2) jumps ahead of the main body by approximately 6 days or 2000 km. Hence, there can be enhanced precipitation over Sumatra, Borneo or New Guinea when the large-scale MJO envelope over the surrounding ocean is one of suppressed precipitation. This behaviour can be accommodated into existing MJO theories. Frictional and topographic moisture convergence and relatively clear skies ahead of the main convective envelope combine with the low thermal inertia of the islands, to allow a rapid response in the diurnal cycle which rectifies onto the lower-frequency MJO. Hence, accurate representations of the diurnal cycle and its scale interaction appear to be necessary for models to simulate the MJO successfully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Madden-Julian oscillation (MJO) is the dominant mode of intraseasonal variability in tropical rainfall on the large scale, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. The Fly River system, Papua New Guinea, is one of the wettest regions on Earth and is at the heart of the MJO envelope. A 16 year time series of daily precipitation at 15 stations along the river system exhibits strong MJO modulation in rainfall. At each station, the difference in rainfall rate between active and suppressed MJO conditions is typically 40% of the station mean. The spread of rainfall between individual MJO events was small enough such that the rainfall distributions between wet and dry phases of the MJO were clearly separated at the catchment level. This implies that successful prediction of the large-scale MJO envelope will have a practical use for forecasting local rainfall. In the steep topography of the New Guinea Highlands, the mean and MJO signal in station precipitation is twice that in the satellite Tropical Rainfall Measuring Mission 3B42HQ product, emphasizing the need for ground-truthing satellite-based precipitation measurements. A clear MJO signal is also present in the river level, which peaks simultaneously with MJO precipitation input in its upper reaches but lags the precipitation by approximately 18 days on the flood plains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maritime Continent archipelago, situated on the equator at 95-165E, has the strongest land-based precipitation on Earth. The latent heat release associated with the rainfall affects the atmospheric circulation throughout the tropics and into the extra-tropics. The greatest source of variability in precipitation is the diurnal cycle. The archipelago is within the convective region of the Madden-Julian Oscillation (MJO), which provides the greatest variability on intra-seasonal time scales: large-scale (∼10^7 km^2) active and suppressed convective envelopes propagate slowly (∼5 m s^-1) eastwards between the Indian and Pacific Oceans. High-resolution satellite data show that a strong diurnal cycle is triggered to the east of the advancing MJO envelope, leading the active MJO by one-eighth of an MJO cycle (∼6 days). Where the diurnal cycle is strong its modulation accounts for 81% of the variability in MJO precipitation. Over land this determines the structure of the diagnosed MJO. This is consistent with the equatorial wave dynamics in existing theories of MJO propagation. The MJO also affects the speed of gravity waves propagating offshore from the Maritime Continent islands. This is largely consistent with changes in static stability during the MJO cycle. The MJO and its interaction with the diurnal cycle are investigated in HiGEM, a high-resolution coupled model. Unlike many models, HiGEM represents the MJO well with eastward-propagating variability on intra-seasonal time scales at the correct zonal wavenumber, although the inter-tropical convergence zone's precipitation peaks strongly at the wrong time, interrupting the MJO's spatial structure. However, the modelled diurnal cycle is too weak and its phase is too early over land. The modulation of the diurnal amplitude by the MJO is also too weak and accounts for only 51% of the variability in MJO precipitation. Implications for forecasting and possible causes of the model errors are discussed, and further modelling studies are proposed.