110 resultados para Newton iteration

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different optimization methods can be employed to optimize a numerical estimate for the match between an instantiated object model and an image. In order to take advantage of gradient-based optimization methods, perspective inversion must be used in this context. We show that convergence can be very fast by extrapolating to maximum goodness-of-fit with Newton's method. This approach is related to methods which either maximize a similar goodness-of-fit measure without use of gradient information, or else minimize distances between projected model lines and image features. Newton's method combines the accuracy of the former approach with the speed of convergence of the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates random number generators in stochastic iteration algorithms that require infinite uniform sequences. We take a simple model of the general transport equation and solve it with the application of a linear congruential generator, the Mersenne twister, the mother-of-all generators, and a true random number generator based on quantum effects. With this simple model we show that for reasonably contractive operators the theoretically not infinite-uniform sequences perform also well. Finally, we demonstrate the power of stochastic iteration for the solution of the light transport problem.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Newton‐Raphson method is proposed for the solution of the nonlinear equation arising from a theoretical model of an acid/base titration. It is shown that it is necessary to modify the form of the equation in order that the iteration is guaranteed to converge. A particular example is considered to illustrate the analysis and method, and a BASIC program is included that can be used to predict the pH of any weak acid/weak base titration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new algorithm for summarizing properties of large-scale time-evolving networks. This type of data, recording connections that come and go over time, is being generated in many modern applications, including telecommunications and on-line human social behavior. The algorithm computes a dynamic measure of how well pairs of nodes can communicate by taking account of routes through the network that respect the arrow of time. We take the conventional approach of downweighting for length (messages become corrupted as they are passed along) and add the novel feature of downweighting for age (messages go out of date). This allows us to generalize widely used Katz-style centrality measures that have proved popular in network science to the case of dynamic networks sampled at non-uniform points in time. We illustrate the new approach on synthetic and real data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.