6 resultados para Net positive development

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the major uncertainties in the ability to predict future climate change, and hence its impacts, is the lack of knowledge of the earth's climate sensitivity. Here, data are combined from the 1985-96 Earth Radiation Budget Experiment (ERBE) with surface temperature change information and estimates of radiative forcing to diagnose the climate sensitivity. Importantly, the estimate is completely independent of climate model results. A climate feedback parameter of 2.3 +/- 1.4 W m(-2) K-1 is found. This corresponds to a 1.0-4.1-K range for the equilibrium warming due to a doubling of carbon dioxide (assuming Gaussian errors in observable parameters, which is approximately equivalent to a uniform "prior" in feedback parameter). The uncertainty range is due to a combination of the short time period for the analysis as well as uncertainties in the surface temperature time series and radiative forcing time series, mostly the former. Radiative forcings may not all be fully accounted for; however, all argument is presented that the estimate of climate sensitivity is still likely to be representative of longer-term climate change. The methodology can be used to 1) retrieve shortwave and longwave components of climate feedback and 2) suggest clear-sky and cloud feedback terms. There is preliminary evidence of a neutral or even negative longwave feedback in the observations, suggesting that current climate models may not be representing some processes correctly if they give a net positive longwave feedback.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community composition. 2 For two grassland systems, one on a sandy soil in the Netherlands and one on a chalk soil in the United Kingdom, we investigated how individual plant species grown in monocultures changed abiotic and biotic soil conditions. Then, we determined feedback effects of these soils to plants of the same or different species. Feedback effects were analysed at the level of plant species and plant taxonomic groups (grasses vs. forbs). 3 In the sandy soils, plant species differed in their effects on soil chemical properties, in particular potassium levels, but PLFA (phospholipid fatty acid) signatures of the soil microbial community did not differ between plant species. The effects of soil chemical properties were even greater when grasses and forbs were compared, especially because potassium levels were lower in grass monocultures. 4 In the chalk soil, there were no effects of plant species on soil chemical properties, but PLFA profiles differed significantly between soils from different monocultures. PLFA profiles differed between species, rather than between grasses and forbs. 5 In the feedback experiment, all plant species in sandy soils grew less vigorously in soils conditioned by grasses than in soils conditioned by forbs. These effects correlated significantly with soil chemical properties. None of the seven plant species showed significant differences between performance in soil conditioned by the same vs. other plant species. 6 In the chalk soil, Sanguisorba minor and in particular Briza media performed best in soil collected from conspecifics, while Bromus erectus performed best in soil from heterospecifics. There was no distinctive pattern between soils collected from forb and grass monocultures, and plant performance could not be related to soil chemical properties or PLFA signatures. 7 Our study shows that mechanisms of plant-soil feedback can depend on plant species, plant taxonomic (or functional) groups and site-specific differences in abiotic and biotic soil properties. Understanding how plant species can influence their rhizosphere, and how other plant species respond to these changes, will greatly enhance our understanding of the functioning and stability of ecosystems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Identifying factors which allow the evolution and persistence of cooperative interactions between species is a fundamental issue in evolutionary ecology. Various hypotheses have been suggested which generally focus on mechanisms that allow cooperative genotypes in different species to maintain interactions over space and time. Here, we emphasise the fact that even within mutualisms (interactions with net positive fitness effects for both partners), there may still be inherent costs, such as the occasional predation by ants upon aphids. Individuals engaged in mutualisms benefit from minimising these costs as long as it is not at the expense of breaking the interspecific interaction, which offers a net positive benefit. The most common and obvious defence traits to minimise interspecific interaction costs are resistance traits, which act to reduce encounter rate between two organisms. Tolerance traits, in contrast, minimise fitness costs to the actor, but without reducing encounter rate. Given that, by definition, it is beneficial to remain in mutualistic interactions, the only viable traits to minimise costs are tolerance-based 'defence' strategies. Thus, we propose that tolerance traits are an important factor promoting stability in mutualisms. Furthermore, because resistance traits tend to propagate coevolutionary arms races between antagonists, whilst tolerance traits do not, we also suggest that tolerance-based defence strategies may be important in facilitating the transition from antagonistic interactions into mutualisms. For example, the mutualism between ants and aphids has been suggested to have evolved from parasitism. We describe how phenotypic plasticity in honeydew production may be a tolerance trait that has prevented escalation into an antagonistic arms race and instead led to mutualistic coevolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Future land use change (LUC) is an important component of the IPCC representative concentration pathways (RCPs), but in these scenarios' radiative forcing targets the climate impact of LUC only includes greenhouse gases. However, climate effects due to physical changes of the land surface can be as large. Here we show the critical importance of including non-carbon impacts of LUC when considering the RCPs. Using an ensemble of climate model simulations with and without LUC, we show that the net climate effect is very different from the carbon-only effect. Despite opposite signs of LUC, all the RCPs assessed here have a small net warming from LUC because of varying biogeophysical effects, and in RCP4.5 the warming is outside of the expected variability. The afforestation in RCP4.5 decreases surface albedo, making the net global temperature anomaly over land around five times larger than RCPs 2.6 and 8.5, for around twice the amount of LUC. Consequent changes to circulation in RCP4.5 in turn reduce Arctic sea ice cover. The small net positive temperature effect from LUC could make RCP4.5's universal carbon tax, which incentivizes retaining and growing forest, counter productive with respect to climate. However, there are spatial differences in the balance of impacts, and potential climate gains would need to be assessed against other environmental aims.