36 resultados para Nehemiah 8:1-3
em CentAUR: Central Archive University of Reading - UK
Resumo:
We describe herein preliminary studies on the Intramolecular Diels-Alder Furan-Mediated Synthesis of 8-Aryl-3, 4-di-hydroisoquinolin-1(2H)-ones that constitutes a new, formal synthesis of Indeno[1,2,3-ij]isoquinolines.
Resumo:
Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os-3(CO)(10)(s-cis-L)] (L= cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os-3(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient la, a second CO bridge is formed in 20 ps in the photoproduct [Os-3(CO)(8)(mu-CO)(2)- (cyclohexa-1,3-diene)] (1b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.
Resumo:
The preparation, the IR and ligand field spectra and the structures of the mixed-ligand addition compounds [(N,N-dimethyl-1,2-diaminoethane)bis(1-(2-thienyl)-4,4,4-trifluoro-1,3-butanedionato)cobalt(II)], [Co(thtf)2me2en], and [(N,N,N′,N′-tetramethyl-1,2-diaminoethane)bis(1-(2-thienyl)-4,4,4-trifluoro-1,3-butanedionato)cobalt(II)], [Co(thtf)2me4en], are reported. The structures were determined by single crystal X-ray diffraction analysis (monoclinic, space group P21/c, Z=4 with a=10.708(6), b=19.531(6), c=13.352(6) Å, β=111.64(10)°, R1=0.0642 and wR2=0.1719 for [Co(thtf)2(me2en)] and a=12.033(6), b=15.565(6), c=15.339(6) Å, β=92.57(6)°, R1=0.0612 and wR2=0.1504 for [Co(thtf)2me4en]). The structures are distorted octahedral and the shortest cobalt–cobalt separation distances are 5.388(2) Å in [Co(thtf)2me2en] and 8.675(3) Å in [Co(thtf)2me4en]. In both compounds the diamine molecules attain the gauche conformation. The U(Z,Z) conformation of the β-dione leads to a semi-chair conformation of the β-dionato chelate rings. The relative orientation of the groups attached to the β-dionato moiety depends on the extent of stereoelectronic effects the N-substitution of the diamine entails. In [Co(thtf)2me2en] the intraligand distance separating the trifluoromethyl carbon atoms is 5.281(18) Å while in [Co(thtf)2me2en] it increases to 8.338(9) Å. The cobalt–cobalt separation distance, the orientation of the chelate rings and the extent of N-substitution seem to affect hydrogen bonding. While in [Co(thtf)2me2en] inter- and intraligand hydrogen bonding is implicated, it is totally absent in [Co(thtf)2me4en].
Resumo:
Two new Mn(III) complexes of formulas [MnL1(N-3)(OMe)](2) (1) and [MnL2(N-3)(2)](n) (2) have been synthesized by using two tridentate NNO-donor Schiff base ligands HL1{(2-[(3-methylaminoethylimino)-methyl]-phenol)} and HL2 {(2-[1-(2-dimethylaminoethylimino)methyl]-phenol)}, respectively. Substitution of the H atom on the secondary amine group of the N-methyldiamine fragment of the Schiff base by a methyl group leads to a drastic structural change from a methoxido-bridged dimer (1) to a single mu(1,3)-azido-bridged 1D helical polymer (2). Both complexes were characterized by single-crystal X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The magnetic properties of compound I show the presence of weak ferromagnetic exchange interactions mediated by double methoiddo bridges (J = 0.95 cm(-1)). Compound 2 shows the existence of a weak antiferromangetic coupling along the chain (J = -8.5 cm(-1)) through the single mu(1,3)-N-3 bridge with a spin canting that leads to a long-range antiferromagnetic order at T-c approximate to 9.3 K and a canting leading to a weak ferromagnetic long-range order at T-c approximate to 8.5 K. It also exibits metamagnetic behavior at low temperatures with a critical field of ca.1.2 T due to the weak antiferromagnetic interchain interactions that appear in the canted ordered phase.
Resumo:
We show that small quantities of 1,3:2,4-di(4-chlorobenzylidene) sorbitol dispersed in poly(epsilon-caprolactone) provide a very effective self-assembling nanoscale framework which, with a flow field, yields extremely high levels of polymer crystal orientation. During modest shear flow of the polymer melt, the additive forms highly extended nano-particles which adopt a preferred alignment with respect to the flow field. On cooling, polymer crystallisation is directed by these particles. This chloro substituted dibenzylidene sorbitol is considerably more effective at directing the crystal growth of poly(epsilon-caprolactone) than the unsubstituted compound.
Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-beta-D-glucan in endosperm of wheat
Resumo:
(1,3;1,4)-beta-d-Glucan (beta-glucan) accounts for 20% of the total cell walls in the starchy endosperm of wheat (Triticum aestivum) and is an important source of dietary fiber for human nutrition with potential health benefits. Bioinformatic and array analyses of gene expression profiles in developing caryopses identified the CELLULOSE SYNTHASE-LIKE F6 (CSLF6) gene as encoding a putative beta-glucan synthase. RNA interference constructs were therefore designed to down-regulate CSLF6 gene expression and expressed in transgenic wheat under the control of a starchy endosperm-specific HMW subunit gene promoter. Analysis of wholemeal flours using an enzyme-based kit and by high-performance anion-exchange chromatography after digestion with lichenase showed decreases in total beta-glucan of between 30% and 52% and between 36% and 53%, respectively, in five transgenic lines compared to three control lines. The content of water-extractable beta-glucan was also reduced by about 50% in the transgenic lines, and the M(r) distribution of the fraction was decreased from an average of 79 to 85 x 10(4) g/mol in the controls and 36 to 57 x 10(4) g/mol in the transgenics. Immunolocalization of beta-glucan in semithin sections of mature and developing grains confirmed that the impact of the transgene was confined to the starchy endosperm with little or no effect on the aleurone or outer layers of the grain. The results confirm that the CSLF6 gene of wheat encodes a beta-glucan synthase and indicate that transgenic manipulation can be used to enhance the health benefits of wheat products.
Resumo:
IMAC can be used to selectively enrich phosphopeptides from complex peptide mixtures, but co-retention of acidic peptides together with the failure to retain some phosphopeptides restricts the general utility of the method. In this study Fe(III)-IMAC was qualitatively and quantitatively assessed using a panel of phosphopeptides, both synthetic and derived from proteolysis of known phosphoproteins, to identify the causes of success and failure in the application of this technique. Here we demonstrate that, as expected, peptides with a more acidic amino acid content are generally more efficiently purified and detected by MALDI-MS after Fe(III)-IMAC than those with a more basic content. Modulating the loading buffer used for Fe(III)-IMAC significantly affects phosphopeptide binding and suggests that conformational factors that lead to steric hindrance and reduced accessibility to the phosphate are important. The use of 1,1,1,3,3,3-hexafluoroisopropanol is shown here to significantly improve Fe(III)-IMAC enrichment and subsequent detection of phosphopeptides by MALDI-MS.
Resumo:
We report herein, the first generation of unsymmetrical ketone-derived chiral stabilized azomethine ylides. Intrairiolecular and intermolecular cycloaddition strategies have been utilized to synthesize both an enantiornerically pure bicyclic proline derivative and an enantionierically pure beta-hydroxy-alpha-amino acid.
Resumo:
IMAC can be used to selectively enrich phosphopeptides from complex peptide mixtures, but co-retention of acidic peptides together with the failure to retain some phosphopeptides restricts the general utility of the method. In this study Fe(III)-IMAC was qualitatively and quantitatively assessed using a panel of phosphopeptides, both synthetic and derived from proteolysis of known phosphoproteins, to identify the causes of success and failure in the application of this technique. Here we demonstrate that, as expected, peptides with a more acidic amino acid content are generally more efficiently purified and detected by MALDI-MS after Fe(III)-IMAC than those with a more basic content. Modulating the loading buffer used for Fe(III)-IMAC significantly affects phosphopeptide binding and suggests that conformational factors that lead to steric hindrance and reduced accessibility to the phosphate are important. The use of 1,1,1,3,3,3-hexa-fluoroisopropanol is shown here to significantly improve Fe(III)-IMAC enrichment and subsequent detection of phosphopeptides by MALDI-MS.
Resumo:
UV irradiation of hitherto unknown 4,5-bis-benzol[b]thiophen-3-yl-[1,3]dithiol-2-one gave 3-(3-benzo[b]thienyl)-thieno[3,4-c]benzo[ e][1,2]dithine by loss of carbon monoxide and rearrangement, whereas 4,5-bis-(2-bromo-phenyl)-[1,3]dithiol-2-one gave a polymeric material containing S-S bridges. The Structures of both photoproducts were demonstrated on the basis of chemical behaviour and/or X-ray diffraction. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Intertwining triple helical nanofibers with an overall handedness have been formed from self-assembling chiral benzene-1,3,5-tricarboxamides 1, 2 and 3, whereas the achiralbenzene-1,3,5-tricarboxamide 4 upon self-association gives rise to straight nanofibers without any twist and transmission electron microscopy images of chiral compounds clearly demonstrate that the handedness of the triple helical nanofibers can be reversed by using the enantiomeric benzene-1,3,5-tricarboxamide building blocks.
Resumo:
N-Propynoyl (5R)-5-phenylmorpholin-2-one undergoes nonregioselective cycloaddition with aromatic azides to furnish mixtures of the corresponding triazoles, whereas N-propenoyl (5R)-5-phenylmorpholin-2-one reacts to furnish the corresponding diastereoisomerically pure aziridines in moderate to good yields, presumably via the intermediate triazolines.
Resumo:
The chiral stabilised azomethine ylide formed from condensation of the dimethyl acetal of acetone with (5S)-5-phenylmorpholinone undergoes stereoselective exo-cycloaddition reactions with a range of doubly and singly activated dipolarophiles when generated in the presence of excess (MgBr2OEt2)-O-.. The cycloadducts can be degraded to yield enantiomerically pure proline derivatives.